留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性蒙皮变体机翼多电机分布式驱动系统研究

随涛 徐志伟

随涛,徐志伟. 柔性蒙皮变体机翼多电机分布式驱动系统研究[J]. 机械科学与技术,2023,42(9):1551-1558 doi: 10.13433/j.cnki.1003-8728.20220096
引用本文: 随涛,徐志伟. 柔性蒙皮变体机翼多电机分布式驱动系统研究[J]. 机械科学与技术,2023,42(9):1551-1558 doi: 10.13433/j.cnki.1003-8728.20220096
SUI Tao, XU Zhiwei. Study on Multi-motor Distributed Driving System of Morphing Wing with Flexible Skin[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1551-1558. doi: 10.13433/j.cnki.1003-8728.20220096
Citation: SUI Tao, XU Zhiwei. Study on Multi-motor Distributed Driving System of Morphing Wing with Flexible Skin[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1551-1558. doi: 10.13433/j.cnki.1003-8728.20220096

柔性蒙皮变体机翼多电机分布式驱动系统研究

doi: 10.13433/j.cnki.1003-8728.20220096
详细信息
    作者简介:

    随涛(1997−),硕士研究生,研究方向为变体机翼驱动技术,t.sui@foxmail.com

    通讯作者:

    徐志伟,教授,博士生导师,zhwxu@nuaa.edu.cn

  • 中图分类号: V249.122TP237

Study on Multi-motor Distributed Driving System of Morphing Wing with Flexible Skin

  • 摘要: 针对可变弯度柔性波纹蒙皮后缘模型结构,采用了多电机驱动技术,设计并制备了机翼模型、驱动及测控系统;采用改进的偏差耦合算法,实现了驱动系统中3台电机的角度同步控制;完成了系统软、硬件的设计,并对后缘结构模型驱动系统进行了空载、地面加载及风洞等多组实验研究,结果表明:测控系统可以实时控制电机间的角度偏差在允许的误差范围内,在有无载荷情况下驱动系统工作无显著差异;承受风洞载荷情况下,柔性后缘结构偏转速度可达1.7 °/s,超调量小于0.3°,电机启动阶段角度差小于20°,匀速运行阶段角度差小于10°。
  • 图  1  多电机驱动后缘结构模型

    Figure  1.  The model of trailing edge structure driven by multiple motors

    图  2  偏差耦合同步控制系统框图

    Figure  2.  Diagram of the deviation-coupled synchronous control system

    图  3  采用固定补偿系数的补偿器1

    Figure  3.  Compensator 1 with fixed compensation coefficient

    图  4  采用模糊PI的补偿器1

    Figure  4.  Compensator 1 with fuzzy PI control

    图  5  补偿器对同步性能的影响

    Figure  5.  The influence of the compensator on synchronization performance

    图  6  控制系统框图

    Figure  6.  Control system diagram

    图  7  风动外控制系统实物图

    Figure  7.  Physical diagram of the wind-driven external control system

    图  8  测控过程软件流程图

    Figure  8.  Software flowchart for the measurement and control process

    图  9  空载电机同步实验曲线

    Figure  9.  The synchronization experiment curve of the unloaded motor

    图  10  后缘结构装配图

    Figure  10.  Assembly diagram of the trailing edge structure

    图  11  柔性后缘变形效果图

    Figure  11.  The effect of flexible trailing edge deformation

    图  12  后缘结构偏转实验曲线

    Figure  12.  Experimental curve of trailing edge structure deflection

    图  13  低速风载下后缘结构偏转测试曲线

    Figure  13.  Test curve of trailing edge structure deflection under low-speed wind load

    表  1  数据采集卡参数

    Table  1.   Data acquisition card parameters

    参数PCI-6602PCI-6220
    计数器个数 8(32 bits) 2(32 bits)
    时钟频率 80 MHz 80 MHz
    模拟通道数 16(16 bits, 250 kS/s)
    模拟输入范围 ± 10 V
    下载: 导出CSV

    表  2  设定转速不同时的电机实验结果

    Table  2.   Experimental results for motors at different set speeds

    电机设定转速/
    (r·min−1)
    最大角度差/(°)
    启动阶段匀速阶段
    500 0.7 0.5
    1000 0.7 0.6
    2000 1.1 0.4
    3000 1.6 0.5
    下载: 导出CSV

    表  3  不同攻角后缘结构下偏测试结果

    Table  3.   Test results for deflection under different attack angles for the trailing edge structure (°)

    机翼攻角后缘超调量启动阶段
    最大角度差
    匀速阶段
    最大角度差
    00.107.496.72
    60.0915.419.82
    100.2915.606.47
    120.0510.948.03
    下载: 导出CSV
  • [1] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [2] BARTLEY-CHO J D, WANG D P, MARTIN C A, et al. Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 279-291. doi: 10.1177/1045389X04042798
    [3] 王晓明, 周文雅, 吴志刚. 压电纤维复合材料驱动的机翼动态形状控制[J]. 航空学报, 2017, 38(1): 220313.

    WANG X M, ZHOU W Y, WU Z G. Dynamic shape control of wings using piezoelectric fiber composite materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 220313. (in Chinese)
    [4] KUDVA J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267. doi: 10.1177/1045389X04042796
    [5] 雷鹏轩, 王元靖, 吕彬彬, 等. 一种智能材料结构在变形体机翼气动特性研究中的应用[J]. 实验流体力学, 2017, 31(5): 74-80. doi: 10.11729/syltlx20160166

    LEI P X, WANG Y J, LYU B B, et al. Application of a smart material structure in the study of aerodynamic characteristics of a morphing wing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 74-80. (in Chinese) doi: 10.11729/syltlx20160166
    [6] 聂瑞. 变体机翼结构关键技术研究[D]. 南京: 南京航空航天大学, 2018

    NIE R. Research on key technologies of morphing wing structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [7] 孙江. 多电机同步协调控制系统的研究[D]. 太原: 太原科技大学, 2009

    SUN J. Research on multi-motor synchronous coordinated control system[D]. Taiyuan: Taiyuan University of Science & Technology, 2009. (in Chinese)
    [8] PEREZ-PINAL, NUNEZ C, ALVAREZ R, et al. Comparison of multi-motor synchronization techniques[C]//Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society. Busan, Korea (South): IEEE, 2004: 1670-1675
    [9] 唐永聪, 刘涛, 张芳芳. 改进的双电机虚拟总轴同步控制[J]. 电子测量技术, 2017, 40(12): 1-5.

    TANG Y C, LIU T, ZHANG F F. Improved dual motor synchronous technology of virtual shaft quality control[J]. Electronic Measurement Technology, 2017, 40(12): 1-5. (in Chinese)
    [10] KOREN Y. Cross-coupled biaxial computer control for manufacturing systems[J]. Journal of Dynamic Systems, Measurement, and Control, 1980, 102(4): 265-272. doi: 10.1115/1.3149612
    [11] PEREZ-PINAL F J, CALDERON G, ARAUJO-VARGAS I. Relative coupling strategy[C]//Proceedings of the IEEE International Electric Machines and Drives Conference. Madison: IEEE, 2003: 1162-1166
    [12] SHIH Y T, CHEN C S, LEE A C. A novel cross-coupling control design for Bi-axis motion[J]. International Journal of Machine Tools and Manufacture, 2002, 42(14): 1539-1548. doi: 10.1016/S0890-6955(02)00109-8
    [13] 张承慧, 石庆升, 程金. 一种基于相邻耦合误差的多电机同步控制策略[J]. 中国电机工程学报, 2007, 27(15): 59-63.

    ZHANG C H, SHI Q S, CHENG J. Synchronization control strategy in multi-motor systems based on the adjacent coupling error[J]. Proceedings of the CSEE, 2007, 27(15): 59-63. (in Chinese)
    [14] JERKOVIĆ ŠTIL V, VARGA T, BENŠIĆ T, et al. A survey of fuzzy algorithms used in multi-motor systems control[J]. Electronics, 2020, 9(11): 1788. doi: 10.3390/electronics9111788
    [15] 耿强, 王少炜, 周湛清, 等. 改进型偏差耦合多电机转速同步控制[J]. 电工技术学报, 2019, 34(3): 474-482.

    GENG Q, WANG S W, ZHOU Z Q, et al. Multi-motor speed synchronous control based on improved relative coupling structure[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 474-482. (in Chinese)
    [16] 尚小东, 刘毅力, 马龙涛, 等. 基于模糊PID的多电机系统协调控制策略的研究[J]. 自动化与仪器仪表, 2021(3): 13-17. doi: 10.14016/j.cnki.1001-9227.2021.03.013

    SHANG X D, LIU Y L, MA L T, et al. Research on coordinated control strategy of multi-motor system based on fuzzy PID[J]. Automation & Instrumentation, 2021(3): 13-17. (in Chinese) doi: 10.14016/j.cnki.1001-9227.2021.03.013
    [17] 苗新刚, 汪苏, 韩凌攀, 等. 基于偏差耦合的多电机单神经元同步控制[J]. 微电机, 2011, 44(2): 44-47.

    MIAO X G, WANG S, HAN L P, et al. Single neuron PID synchronization control strategy in multi-motor systems based on the relative coupling control[J]. Micromotors, 2011, 44(2): 44-47. (in Chinese)
    [18] 曹玲芝, 李春文, 牛超, 等. 基于相邻交叉耦合的多感应电机滑模同步控制[J]. 电机与控制学报, 2008, 12(5): 586-592.

    CAO L Z, LI W C, NIU C, et al. Synchronized sliding-mode control for multi-induction motors based on adjacent cross-coupling[J]. Electric Machines and Control, 2008, 12(5): 586-592. (in Chinese)
    [19] 周广飞, 侯博川, 杨建华, 等. 基于动态补偿的多电机控制算法[J]. 航空学报, 2020, 41(S1): 723771.

    ZHOU G F, HOU B C, YANG J H, et al. Multi-motor control algorithm based on dynamic compensation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723771. (in Chinese)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  38
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回