留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微凸体分布计算方法对曲面接触预测的影响

周炜 胡祺 唐进元 温昱钦

周炜,胡祺,唐进元, 等. 微凸体分布计算方法对曲面接触预测的影响[J]. 机械科学与技术,2023,42(8):1192-1199 doi: 10.13433/j.cnki.1003-8728.20220075
引用本文: 周炜,胡祺,唐进元, 等. 微凸体分布计算方法对曲面接触预测的影响[J]. 机械科学与技术,2023,42(8):1192-1199 doi: 10.13433/j.cnki.1003-8728.20220075
ZHOU Wei, HU Qi, TANG Jinyuan, WEN Yuqin. Effect of Calculation Method for Asperity Distribution on Contact Solution[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1192-1199. doi: 10.13433/j.cnki.1003-8728.20220075
Citation: ZHOU Wei, HU Qi, TANG Jinyuan, WEN Yuqin. Effect of Calculation Method for Asperity Distribution on Contact Solution[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1192-1199. doi: 10.13433/j.cnki.1003-8728.20220075

微凸体分布计算方法对曲面接触预测的影响

doi: 10.13433/j.cnki.1003-8728.20220075
基金项目: 国家自然科学基金项目(51705142)、湖南省自然科学基金项目(2018JJ3162)及难加工材料高效精密加工湖南省重点实验室开放基金项目(E21752)
详细信息
    作者简介:

    周炜(1985−),讲师,博士,硕士生导师,研究方向为表面摩擦学、结构疲劳与断裂,cnihelat@163.com

  • 中图分类号: TH117

Effect of Calculation Method for Asperity Distribution on Contact Solution

  • 摘要: 为借助Greenwood-Williamson(GW)接触模型开展粗糙表面接触分析,基于微凸体识别的参数定义法和基于随机过程理论的谱矩法都被广泛用于微凸体分布参数计算。为厘清应用不同计算方法产生的接触求解差异,针对粗糙曲面接触,利用快速傅里叶变换重构获得不同统计分布下的粗糙表面随机样本,由三点定义法和谱矩法分别计算仿真样本的微凸体峰点分布参数,对样本开展GW接触分析,得到两种计算方法下接触预测结果,对结果进行了对比讨论,分析了样本表面统计分布参数、高通滤波常数、曲率半径和载荷的影响。最后,通过试验数据对谱矩法的计算偏差进行了检验,对微凸体分布参数计算给出了建议。
  • 图  1  接触模型示意图

    Figure  1.  Schematic diagram of the contact model

    图  2  不同载荷下接触求解对比

    Figure  2.  Comparison of contact solutions under different loads

    图  3  两种方法接触求解相对偏差

    Figure  3.  Relative deviation in contact solutions using two different methods

    图  4  不同间距d/σ下接触求解对比

    Figure  4.  Comparison of contact solutions at different spacings d/σ

    图  5  不同间距d/σ下平均接触压力求解对比

    Figure  5.  Comparison of average contact pressure solutions at different spacings d/σ

    图  6  不同间距h/σ下接触求解对比

    Figure  6.  Comparison of contact solution at different gaps h/σ

    图  7  不同间距h/σ下平均接触压力求解对比

    Figure  7.  Comparison of average contact pressure solutions at different gaps h/σ

    图  8  接触载荷-间距关系对比

    Figure  8.  Comparison of the relationship between contact load and spacing

    图  9  微凸体峰点分布计算对比与试验验证

    Figure  9.  Comparison and experimental validation of microasperity peak distribution calculations

    图  10  微凸体峰点密度对比

    Figure  10.  Comparison of microasperity peak densities

    表  1  接触面积预测相对偏差

    Table  1.   Relative deviation in predicted contact area

    σ/μmP/(N·μm−1
    0.00010.001 00.010 00.100 0
    0.0523.15%24.40%24.36%25.46%
    0.1023.60%23.86%24.31%24.70%
    0.5023.81%23.46%23.80%23.97%
    下载: 导出CSV
  • [1] THOMAS T R. Rough surfaces[M]. 2nd ed. London: Imperial College Press, 1999: 133-147
    [2] WEN Y Q, TANG J Y, ZHOU W, et al. An improved simplified model of rough surface profile[J]. Tribology International, 2018, 125: 75-84. doi: 10.1016/j.triboint.2018.04.025
    [3] GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1966, 295(1442): 300-319.
    [4] GREENWOOD J A, WU J J. Surface roughness and contact: an apology[J]. Meccanica, 2001, 36(6): 617-630. doi: 10.1023/A:1016340601964
    [5] SISTA B, VEMAGANTI K. Estimation of statistical parameters of rough surfaces suitable for developing micro-asperity friction models[J]. Wear, 2014, 316(1-2): 6-18. doi: 10.1016/j.wear.2014.04.012
    [6] 运睿德, 丁北. 考虑多尺度接触状态的新接触模型[J]. 机械工程学报, 2019, 55(9): 80-89. doi: 10.3901/JME.2019.09.080

    YUN R D, DING B. New fractal contact model considered multi-scale levels[J]. Journal of Mechanical Engineering, 2019, 55(9): 80-89. (in Chinese) doi: 10.3901/JME.2019.09.080
    [7] WHITEHOUSE D J. The digital measurement of peak parameters on surface profiles[J]. Journal of Mechanical Engineering Science, 1978, 20(4): 221-227. doi: 10.1243/JMES_JOUR_1978_020_037_02
    [8] WEN Y Q, TANG J Y, ZHOU W, et al. A reconstruction and contact analysis method of three-dimensional rough surface based on ellipsoidal asperity[J]. Journal of Tribology, 2020, 142(4): 041502. doi: 10.1115/1.4045633
    [9] 朱少禹, 孙军, 李彪, 等. 粗糙表面湍流润滑的随机模型[J]. 机械工程学报, 2019, 55(9): 71-79. doi: 10.3901/JME.2019.09.071

    ZHU S Y, SUN J, LI B, et al. Stochastic models for turbulent lubrication of rough surfaces[J]. Journal of Mechanical Engineering, 2019, 55(9): 71-79. (in Chinese) doi: 10.3901/JME.2019.09.071
    [10] WEN Y Q, TANG J Y, ZHOU W, et al. A new elliptical microcontact model considering elastoplastic deformation[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2018, 232(11): 1352-1364. doi: 10.1177/1350650117753447
    [11] ZHAO Y W, CHANG L. A model of asperity interactions in elastic-plastic contact of rough surfaces[J]. Journal of Tribology, 2001, 123(4): 857-864. doi: 10.1115/1.1338482
    [12] 韩姣皎, 杜飞, 徐超. 粗糙界面法向接触理论模型与实验结果对比研究[J]. 机械科学与技术, 2018, 37(12): 1875-1882. doi: 10.13433/j.cnki.1003-8728.20180091

    HAN J J, DU F, XU C. Comparative study on analytical models and experimental results for normal contact of rough surfaces[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1875-1882. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180091
    [13] JOHNSONK L. 接触力学[M]. 徐秉业, 罗学富, 刘信声, 等译. 北京: 高等教育出版社, 1992: 451-481

    JOHNSON K L. Contact mechanics[M]. XU B Y, LUO X F, LIU X S, et al, trans. Beijing: Higher Education Press, 1992: 451-481. (in Chinese)
    [14] NAYAK P R. Random process model of rough surfaces[J]. Journal of Lubrication Technology, 1971, 93(3): 398-407. doi: 10.1115/1.3451608
    [15] McCool J I. Comparison of models for the contact of rough surfaces[J]. Wear, 1986, 107(1): 37-60. doi: 10.1016/0043-1648(86)90045-1
    [16] POGAČNIK A, KALIN M. How to determine the number of asperity peaks, their radii and their heights for engineering surfaces: a critical appraisal[J]. Wear, 2013, 300(1-2): 143-154. doi: 10.1016/j.wear.2013.01.105
    [17] KALIN M, POGAČNIK A, ETSION I, et al. Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods[J]. Tribology International, 2016, 93: 137-141. doi: 10.1016/j.triboint.2015.09.013
    [18] ZHOU W, TANG J Y, HE Y F. Formulae of roughness peak distribution parameters with standard deviation and correlation length[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2015, 229(12): 1395-1408. doi: 10.1177/1350650115579212
    [19] PAWAR G, PAWLUS P, ETSION I, et al. The effect of determining topography parameters on analyzing elastic contact between isotropic rough surfaces[J]. Journal of Tribology, 2013, 135(1): 011401. doi: 10.1115/1.4007760
    [20] LO C C. Elastic contact of rough cylinders[J]. International Journal of Mechanical Sciences, 1969, 11(1): 105-115. doi: 10.1016/0020-7403(69)90083-6
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  90
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回