留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝合金分瓣模压印接头的强度预测模型

王玉涛 曾凯 邢保英 何晓聪

王玉涛,曾凯,邢保英, 等. 铝合金分瓣模压印接头的强度预测模型[J]. 机械科学与技术,2023,42(8):1357-1361 doi: 10.13433/j.cnki.1003-8728.20220048
引用本文: 王玉涛,曾凯,邢保英, 等. 铝合金分瓣模压印接头的强度预测模型[J]. 机械科学与技术,2023,42(8):1357-1361 doi: 10.13433/j.cnki.1003-8728.20220048
WANG Yutao, ZENG Kai, XING Baoying, HE Xiaocong. Strength Prediction Model of Aluminum Alloy Clinched Joints Formed With Segmental Mandrel[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1357-1361. doi: 10.13433/j.cnki.1003-8728.20220048
Citation: WANG Yutao, ZENG Kai, XING Baoying, HE Xiaocong. Strength Prediction Model of Aluminum Alloy Clinched Joints Formed With Segmental Mandrel[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1357-1361. doi: 10.13433/j.cnki.1003-8728.20220048

铝合金分瓣模压印接头的强度预测模型

doi: 10.13433/j.cnki.1003-8728.20220048
基金项目: 国家自然科学基金项目(51565022,51565023)
详细信息
    作者简介:

    王玉涛(1996−),硕士研究生,研究方向为薄板材料连接,2676726174@qq.com

    通讯作者:

    曾凯,副教授,硕士生导师,1965746102@qq.com

  • 中图分类号: TB31

Strength Prediction Model of Aluminum Alloy Clinched Joints Formed With Segmental Mandrel

  • 摘要: 采用Box-behnken design(BBD)实验设计法,开展铝合金压印接头的工艺试验研究。试验过程选用了5182、5052和6061这3种铝合金薄板,建立了以冲压力、板材厚度、板材硬度为影响因素,以失效载荷为响应值的多元回归模型,并进行了试验验证。结果表明:建立的多元回归模型可以预测铝合金压印接头的拉剪失效载荷,最大误差为17.7%,其误差在工程应用范围内较小;且方差分析表明,各因素对失效载荷影响程度大小的顺序为冲压力、板材硬度、板材厚度;压印接头的失效载荷随冲压力的增大呈先增大后减小的趋势,随板材厚度的增大呈先减小后增大的趋势,板材硬度对接头失效载荷的影响呈正线性相关性。
  • 图  1  实验设备、分瓣模具及试件剖面图

    Figure  1.  Experimental equipment, segmental mandrel and Specimen cross-section

    图  2  残差正态概率及真实值与预测值对比

    Figure  2.  Normal probability of residuals and comparison of true and predicted values

    图  3  单因素对失效载荷的影响

    Figure  3.  Effect of single factor on failure loads

    图  4  冲压力和板材硬度对失效载荷的响应面和等高线图

    Figure  4.  Surface and contour plots of the response of punching force and plate hardness to failure loads

    表  1  试验因素及水平设计

    Table  1.   Experimental factors and level design

    因素编码值冲压力
    X1/kN
    板材硬度
    X2/HBR
    板材厚度
    X2/mm
    −132.218.61
    038.431.01.5
    148.755.32
    下载: 导出CSV

    表  2  实验方案及结果

    Table  2.   Experimental program and results

    组号冲压力
    X1/kN
    板材硬度
    X2/HRB
    板材厚度
    X3/mm
    失效载荷
    Y/kN
    132.218.61.51.5
    248.718.61.52.1
    332.255.31.50.33
    448.755.31.53.19
    532.23111.7
    648.73112.51
    732.23122.1
    848.73122.21
    938.418.612
    1038.455.312.87
    1138.418.622.05
    1238.455.323.55
    1338.4311.52.15
    1438.4311.52.13
    1538.4311.52.12
    下载: 导出CSV

    表  3  失效载荷响应面回归模型的方差分析

    Table  3.   ANOVA of the response surface regression model for failure loads

    因素平方和自由度均方差FProb>F
    模型5.8560.984.300.0310
    X13.0913.0913.610.0061
    X21.0011.004.410.0689
    X30.08610.0860.380.5549
    X1X21.2911.295.700.0440
    X1 21.1111.114.890.0579
    X3 20.7210.723.180.1124
    失拟项1.8160.301295.780.0008
    下载: 导出CSV

    表  4  验证实验结果

    Table  4.   Results of validation experiments

    组号基板材料冲压力/kN板材硬度/HRB板材厚度/mm预测值/kN试验均值/kN相对误差/%
    1518244.318.62.02.4992.14116.7
    2142056.162.01.53.3742.86717.7
    下载: 导出CSV
  • [1] HE X C, ZHANG Y, XING B Y, et al. Mechanical properties of extensible die clinched joints in titanium sheet materials[J]. Materials & Design, 2015, 71: 26-35.
    [2] HE X C. Recent development in finite element analysis of clinched joints[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(5-8): 607-612. doi: 10.1007/s00170-009-2306-2
    [3] HE X C, LEI L, ZHANG Y, et al. Mechanical properties and fracture analysis of clinched joints in titanium sheet materials[J]. Acta Physica Polonica A, 2017, 131(1): 16-19. doi: 10.12693/APhysPolA.131.16
    [4] KARIM M A, PARK Y D. A review on welding of dissimilar metals in car body manufacturing[J]. Journal of Welding and Joining, 2020, 38(1): 8-23. doi: 10.5781/JWJ.2020.38.1.1
    [5] CISCHINO E, DI PAOLO F, MANGINO E, et al. An advanced technological lightweighted solution for a body in white[J]. Transportation Research Procedia, 2016, 14: 1021-1030. doi: 10.1016/j.trpro.2016.05.082
    [6] DEEPATI A K, ALHAZMI W, BENJEER I. Mechanical characterization of AA5083 aluminum alloy welded using resistance spot welding for the lightweight automobile body fabrication[J]. Materials Today:Proceedings, 2021, 45: 5139-5148. doi: 10.1016/j.matpr.2021.01.646
    [7] CHEN C, ZHANG H Y, ZHAO S D, et al. Effects of sheet thickness and material on the mechanical properties of flat clinched joint[J]. Frontiers of Mechanical Engineering, 2021, 16(2): 410-419. doi: 10.1007/s11465-020-0618-y
    [8] CHEN C, ZHAO S D, CUI M C, et al. Effects of geometrical parameters on the strength and energy absorption of the height-reduced joint[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12): 3533-3541. doi: 10.1007/s00170-016-9619-8
    [9] LONG J L, LAN F C, CHEN J Q, et al. Mechanical properties prediction of the mechanical clinching joints based on genetic algorithm and BP neural network[J]. Chinese Journal of Mechanical Engineering, 2009, 22(1): 36-41. doi: 10.3901/CJME.2009.01.036
    [10] OUDJENE M, BEN-AYED L, DELAMÉZIÈRE A, et al. Shape optimization of clinching tools using the response surface methodology with moving least-square approximation[J]. Journal of Materials Processing Technology, 2009, 209(1): 289-296. doi: 10.1016/j.jmatprotec.2008.02.030
    [11] 杨露露, 宋燕利, 辜志强, 等. 钢铝压-胶复合连接接头力学行为与失效机理研究[J]. 机械科学与技术, 2021, 40(7): 1120-1127. doi: 10.13433/j.cnki.1003-8728.20200167

    YANG L L, SONG Y L, GU Z Q, et al. Study on mechanical behavior and failure mechanism of steel-aluminum clinch-bonded hybrid joints[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1120-1127. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200167
    [12] 杨慧艳, 何晓聪, 丁燕芳, 等. 铝合金压印接头的强度研究[J]. 应用力学学报, 2014, 31(2): 299-304. doi: 10.11776/cjam.31.02.B038

    YANG H Y, HE X C, DING Y F, et al. Analytical models and experimental studies on clinched joints in aluminium alloy[J]. Chinese Journal of Applied Mechanics, 2014, 31(2): 299-304. (in Chinese) doi: 10.11776/cjam.31.02.B038
    [13] 杨慧艳, 何晓聪, 周森. 压印接头强度的有限元模型及理论计算方法[J]. 吉林大学学报(工学版), 2015, 45(3): 864-871. doi: 10.13229/j.cnki.jdxbgxb201503026

    YANG H Y, HE X C, ZHOU S. Simulation and calculation methods for clinched joint strength[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3): 864-871. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb201503026
    [14] 韩晓兰, 陈超, 刘辰, 等. 双层板材平底无铆塑性连接的抗拉强度预测模型[J]. 机械工程学报, 2018, 54(24): 61-68. doi: 10.3901/JME.2018.24.061

    HAN X L, CHEN C, LIU C, et al. Predictive model of tensile strength in flat clinching[J]. Journal of Mechanical Engineering, 2018, 54(24): 61-68. (in Chinese) doi: 10.3901/JME.2018.24.061
    [15] 曾凯, 孙晓婷, 邢保英, 等. DP780高强钢胶接点焊的工艺优化及断裂特征分析[J]. 焊接学报, 2020, 41(4): 77-83. doi: 10.12073/j.hjxb.20191017001

    ZENG K, SUN X T, XING B Y, et al. Process optimization and fracture characteristic analysis of DP780 high strength steel weld-bonding[J]. Transactions of the China Welding Institution, 2020, 41(4): 77-83. (in Chinese) doi: 10.12073/j.hjxb.20191017001
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  39
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回