留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃料电池系统爪式氢气循环泵内部流动特性模拟

董凯瑞 刘广彬 高志成

董凯瑞,刘广彬,高志成. 燃料电池系统爪式氢气循环泵内部流动特性模拟[J]. 机械科学与技术,2023,42(8):1236-1241 doi: 10.13433/j.cnki.1003-8728.20220032
引用本文: 董凯瑞,刘广彬,高志成. 燃料电池系统爪式氢气循环泵内部流动特性模拟[J]. 机械科学与技术,2023,42(8):1236-1241 doi: 10.13433/j.cnki.1003-8728.20220032
DONG Kairui, LIU Guangbin, GAO Zhicheng. Simulating Internal Flow Characteristics of Claw-type Hydrogen Circulation Pump in Fuel Cell System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1236-1241. doi: 10.13433/j.cnki.1003-8728.20220032
Citation: DONG Kairui, LIU Guangbin, GAO Zhicheng. Simulating Internal Flow Characteristics of Claw-type Hydrogen Circulation Pump in Fuel Cell System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1236-1241. doi: 10.13433/j.cnki.1003-8728.20220032

燃料电池系统爪式氢气循环泵内部流动特性模拟

doi: 10.13433/j.cnki.1003-8728.20220032
基金项目: 中国科学院产业技术研究院产业化创新团队专项(ZK2018005)
详细信息
    作者简介:

    董凯瑞(1996−),硕士研究生,研究方向为燃料电池系统氢气供应设备,dkr168@163.com

    通讯作者:

    刘广彬,副教授,硕士生导师,lgbcomp@163.com

  • 中图分类号: TK91;TH4

Simulating Internal Flow Characteristics of Claw-type Hydrogen Circulation Pump in Fuel Cell System

  • 摘要: 爪式氢气循环泵具有输气平稳、适应工况范围广、效率高等优点,是燃料电池系统的关键设备。建立了氢气循环泵数学模型,数值模拟了其内部流动特性,获得了工作腔内流场分布规律。结果表明:转子工作过程存在等容输送过程,形成的两侧工作腔内气体压力、温度均存在差异,泄漏导致容积较小的工作腔内压力较高,两者压力差约为8.1 kPa。两侧工作腔内压力随间隙、吸排气压力的增大而增大,温度随吸气压力的增大而减小。转子最大热变形位于转子爪尖处。模拟结果与实验值基本吻合,验证了模拟方法的准确性。
  • 图  1  氢气循环泵原理

    Figure  1.  Principle of hydrogen circulating pump

    图  2  氢气循环泵的流体域

    Figure  2.  Fluid domain of hydrogen circulating pump

    图  3  流体域网格示意图

    Figure  3.  Fluid domain grid diagram

    图  4  不同角度压力分布

    Figure  4.  Pressure distribution at different angles

    图  5  速度场分布

    Figure  5.  Velocity field distribution

    图  6  位置点

    Figure  6.  Position point

    图  7  工作腔压力随时间变化关系

    Figure  7.  Variation of chamber pressure with time

    图  8  左右工作腔内的压力和温度

    Figure  8.  Pressure and temperature in the left and right working chamber

    图  9  转子热变形

    Figure  9.  Rotor thermal deformation

    图  10  模拟值与实验值的对比结果

    Figure  10.  Results of comparison between simulated and experimental values

    表  1  模拟参数

    Table  1.   Simulation parameter

    参数数值参数数值
    进口压力/kPa 260 轴向间隙/mm 0.06
    出口压力/kPa 280 径向间隙/mm 0.06
    进气温度/℃ 75 转速/(r·min−1) 5000
    下载: 导出CSV

    表  2  转子变形大小

    Table  2.   Rotor deformation size

    角度/(°)最大变形值/mm角度/(°)最大变形值/mm
    604.10 × 10−21804.36 × 10−2
    1204.15 × 10−22704.42 × 10−2
    下载: 导出CSV
  • [1] 李奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报, 2019, 39(8): 2365-2375.

    LI Q, LIU J W, CHEN W R. Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2019, 39(8): 2365-2375. (in Chinese)
    [2] WANG X H, XU S C, XING C M. Numerical and experimental investigation on an ejector designed for an 80 kW polymer electrolyte membrane fuel cell stack[J]. Journal of Power Sources, 2019, 415: 25-32. doi: 10.1016/j.jpowsour.2019.01.039
    [3] LIU Z R, LIU Z, JIAO K, et al. Numerical investigation of ejector transient characteristics for a 130‐kW PEMFC system[J]. International Journal of Energy Research, 2020, 44(5): 3697-3710. doi: 10.1002/er.5156
    [4] YIN Y, FAN M Z, JIAO K, et al. Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system[J]. Energy Conversion and Management, 2016, 126: 1106-1117. doi: 10.1016/j.enconman.2016.09.024
    [5] ZHOU S M, JIA X H, YAN H M, et al. A novel profile with high efficiency for hydrogen-circulating Roots pumps used in FCVs[J]. International Journal of Hydrogen Energy, 2021, 46(42): 22122-22133. doi: 10.1016/j.ijhydene.2021.04.038
    [6] XING L F, HE Y N, WEN J, et al. Three-dimensional CFD modelling of a Roots blower for hydrogen recirculation in fuel cell system[C]//2018 24th International Compressor Engineering Conference. Purdue, 2018
    [7] ZHANG Q Q, FENG J M, WEN J, et al. 3D transient CFD modelling of a scroll-type hydrogen pump used in FCVs[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19231-19241. doi: 10.1016/j.ijhydene.2018.08.158
    [8] GU P T, XING L F, WANG Y F, et al. Transient flow field and performance analysis of a claw pump for FCVs[J]. International Journal of Hydrogen Energy, 2021, 46(1): 984-997. doi: 10.1016/j.ijhydene.2020.09.154
    [9] LI Q H, WANG W M, WEAVER B, et al. Active rotordynamic stability control by use of a combined active magnetic bearing and hole pattern seal component for back-to-back centrifugal compressors[J]. Mechanism and Machine Theory, 2018, 127: 1-12. doi: 10.1016/j.mechmachtheory.2018.04.018
    [10] SUN S K, ZHAO B, JIA X H, et al. Three-dimensional numerical simulation and experimental validation of flows in working chambers and inlet/outlet pockets of Roots pump[J]. Vacuum, 2017, 137: 195-204. doi: 10.1016/j.vacuum.2017.01.005
    [11] 李宏利. 涡旋式压缩机涡旋型线的研究综述与前景[J]. 山东工业技术, 2016(13): 13.

    LI H L. Research review and Prospect of scroll profile of scroll compressor[J]. Shandong Industrial Technology, 2016(13): 13. (in Chinese)
    [12] VOORDE J V, VIERENDEELS J, DICK E. Development of a Laplacian-based mesh generator for ALE calculations in rotary volumetric pumps and compressors[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39-41): 4401-4415. doi: 10.1016/j.cma.2003.12.063
    [13] KOVACEVIC A. Boundary adaptation in grid generation for CFD analysis of screw compressors[J]. International Journal for Numerical Methods in Engineering, 2005, 64(3): 401-426. doi: 10.1002/nme.1376
    [14] 王君, 宋永兴, 姜营, 等. 基于结构化动网格的涡旋压缩机内部流场模拟[J]. 工程热物理学报, 2016, 37(2): 309-313.

    WANG J, SONG Y X, JIANG Y, et al. Numerical simulations of internal flow fields for scroll compressors based on structured dynamic meshes[J]. Journal of Engineering Thermophysics, 2016, 37(2): 309-313. (in Chinese)
    [15] 李海峰, 吴冀川, 刘建波, 等. 有限元网格剖分与网格质量判定指标[J]. 中国机械工程, 2012, 23(3): 368-377. doi: 10.3969/j.issn.1004-132X.2012.03.026

    LI H F, WU J C, LIU J B, et al. Finite element mesh generation and decision criteria of mesh quality[J]. China Mechanical Engineering, 2012, 23(3): 368-377. (in Chinese) doi: 10.3969/j.issn.1004-132X.2012.03.026
    [16] 江涛, 谷正气, 杨易, 等. 细分网格在车身流场仿真中的精度效率研究[J]. 中国机械工程, 2009, 20(23): 2844-2849. doi: 10.3321/j.issn:1004-132X.2009.23.018

    JIANG T, GU Z Q, YANG Y, et al. Study on the precision and efficiency of subdivision mesh in automobile flow field simulation[J]. China Mechanical Engineering, 2009, 20(23): 2844-2849. (in Chinese) doi: 10.3321/j.issn:1004-132X.2009.23.018
    [17] 冯博琳. 复杂型面螺杆转子结构及流场特性分析[D]. 汉中: 陕西理工大学, 2018

    FENG B L. Analysis of structure and flow field characteristics of complex profile screw rotor[D]. Hanzhong: Shaanxi University of Technology, 2018 (in Chinese)
    [18] 何雪明, 施国江, 武美萍, 等. 双螺杆压缩机CFD分析新方法的研究与应用[J]. 机械科学与技术, 2018, 37(2): 211-219.

    HE X M, SHI G J, WU M P, et al. Exploring and applying a new method of analyzing CFD of twin screw compressor[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 211-219. (in Chinese)
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  95
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回