留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动商用车车架疲劳寿命模拟与优化

王源绍 严斯 张继元 迟英姿 乔克婷

王源绍,严斯,张继元, 等. 电动商用车车架疲劳寿命模拟与优化[J]. 机械科学与技术,2023,42(5):673-678 doi: 10.13433/j.cnki.1003-8728.20220031
引用本文: 王源绍,严斯,张继元, 等. 电动商用车车架疲劳寿命模拟与优化[J]. 机械科学与技术,2023,42(5):673-678 doi: 10.13433/j.cnki.1003-8728.20220031
WANG Yuanshao, YAN Si, ZHANG Jiyuan, CHI Yingzi, QIAO Keting. Simulation and Optimization of Fatigue Life for Electric Commercial Vehicle Frame[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 673-678. doi: 10.13433/j.cnki.1003-8728.20220031
Citation: WANG Yuanshao, YAN Si, ZHANG Jiyuan, CHI Yingzi, QIAO Keting. Simulation and Optimization of Fatigue Life for Electric Commercial Vehicle Frame[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 673-678. doi: 10.13433/j.cnki.1003-8728.20220031

电动商用车车架疲劳寿命模拟与优化

doi: 10.13433/j.cnki.1003-8728.20220031
基金项目: 江苏省高等学校自然科学研究面上项目(19KJD580004)
详细信息
    作者简介:

    王源绍(1987−),讲师,博士研究生,研究方向为汽车NVH、车身轻量化,wangshuibai@126.com

  • 中图分类号: TH-3

Simulation and Optimization of Fatigue Life for Electric Commercial Vehicle Frame

  • 摘要: 为精确预测电动商用车车架疲劳寿命,通过建立车架有限元模型并进行强度仿真,确定疲劳失效危险位置。采集危险位置载荷谱,分析疲劳损伤值,采用Miner疲劳损伤理论和雨流计数法将应力谱时域信号转化成雨流矩阵,最终建立车架台架实验与道路试验疲劳寿命间的当量折算关系。设计实验方法并制作实验台架,对比道路试验与台架实验结果,验证了所建立当量折算关系的准确性。表明所建立的实验方法可提高车架疲劳寿命预测精度与可靠性,缩短道路疲劳试验周期。
  • 图  1  车架有限元模型

    图  2  仿真结果

    图  3  雨流计数法

    图  4  车架前测量点加速度谱案

    图  5  车架后测量点加速度谱案

    图  6  车架扭转角-时间曲线

    图  7  车架应变信号采集点

    图  8  采集点应力谱

    图  9  台架疲劳实验

    图  10  车架纵梁台架实验结果

    图  11  车架纵梁道路试验结果

    表  1  车架左侧纵梁损伤结果

    编号实验工况单次损伤
    1−1°~1°1.17×10−6
    2−2°~2°1.89×10−6
    3−3°~3°3.86×10−6
    4−4°~4°9.77×10−6
    下载: 导出CSV
  • [1] 徐华俊, 汤萍, 黄鹤. 汽车车门玻璃升降系统性能耐久试验机构设计[J]. 机械, 2018, 45(8): 40-44. doi: 10.3969/j.issn.1006-0316.2018.08.009

    XU H J, TANG P, HUANG H. Design of performance & durability test mechanism for car door glass lifting system[J]. Machinery, 2018, 45(8): 40-44. (in Chinese) doi: 10.3969/j.issn.1006-0316.2018.08.009
    [2] 徐扬威. 某轿车前副车架疲劳试验台优化及试验研究[D]. 长春: 吉林大学, 2018

    XU Y W. Optimization and experimental study of fatigue test rig for a car front sub-frame[D]. Changchun: Jilin University, 2018. (in Chinese)
    [3] 吴江生. 基于汽车伪损伤等效的道路模拟试验方法应用研究[D]. 上海: 上海交通大学, 2016

    WU J S. Road simulation test method research based on vehilce pseudo-damage equivalent[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
    [4] PETRONE N, MENEGHETTI G. Fatigue life prediction of lightweight electric moped frames after field load spectra collection and constant amplitude fatigue bench tests[J]. International Journal of Fatigue, 2019, 127: 564-575. doi: 10.1016/j.ijfatigue.2019.05.019
    [5] BAKIR M, OZMEN B, DONERTAS C, et al. Correlation of simulation, test bench and rough road testing in terms of strength and fatigue life of a leaf spring[J]. Procedia Engineering, 2018, 213: 303-312. doi: 10.1016/j.proeng.2018.02.031
    [6] SARANIK M, JÉZÉQUEL L, LENOIR D. Experimental and numerical study for Fatigue life prediction of bolted connection[J]. Procedia Engineering, 2013, 66: 354-368. doi: 10.1016/j.proeng.2013.12.090
    [7] 田洪雷, 孙维光, 杨文超, 等. 大型结构部件多损伤点疲劳试验载荷等效方法研究[J]. 机械强度, 2021, 43(2): 434-441. doi: 10.16579/j.issn.1001.9669.2021.02.026

    TIAN H L, SUN W G, YANG W C, et al. Load equivalence test method for fatigue life of multi-site-damage large size structure part[J]. Journal of Mechanical Strength, 2021, 43(2): 434-441. (in Chinese) doi: 10.16579/j.issn.1001.9669.2021.02.026
    [8] 杜建, 于人杰, 董国疆, 等. 变截面钢板弹簧台架疲劳载荷谱编辑研究[J]. 机械科学与技术, 2022, 41(3): 371-378. doi: 10.13433/j.cnki.1003-8728.20200347

    DU J, YU R J, DONG G J, et al. Study on fatigue bench load spectrum of leaf spring with variable section[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 371-378. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200347
    [9] 王璋, 罗燕, 肖介平, 等. 基于瞬态疲劳分析的汽车A柱上端开裂问题研究[J]. 北京汽车, 2020(5): 21-24. doi: 10.14175/j.issn.1002-4581.2020.05.005

    WANG Z, LUO Y, XIAO J P, et al. Crack problem of automobile a-pillar upper end based on transient fatigue analysis[J]. Beijing Automotive Engineering, 2020(5): 21-24. (in Chinese) doi: 10.14175/j.issn.1002-4581.2020.05.005
    [10] 张泽俊, 刘宗成, 颜伏伍, 等. 基于实测道路谱的车身疲劳耐久性能改进[J]. 汽车零部件, 2020(4): 16-20. doi: 10.19466/j.cnki.1674-1986.2020.04.004

    ZHANG Z J, LIU Z C, YAN F W, et al. Durability improvement of BIW based on measured road spectrum[J]. Automobile Parts, 2020(4): 16-20. (in Chinese) doi: 10.19466/j.cnki.1674-1986.2020.04.004
    [11] 李鹏, 谭志军, 倪城琳, 等. 基于台架试验的重型商用车车架研究[J]. 四川兵工学报, 2014, 35(7): 64-66.

    LI P, TAN Z J, NI C L, et al. Heavy-duty commercial vehicle frame based on the bench test[J]. Journal of Sichuan Ordnance, 2014, 35(7): 64-66. (in Chinese)
    [12] KEPKA M, KEPKA JR M, VÁCLAVÍK J, et al. Fatigue life of a bus structure in normal operation and in accelerated testing on special tracks[J]. Procedia Structural Integrity, 2019, 17: 44-50. doi: 10.1016/j.prostr.2019.08.007
    [13] 嵇应凤. 矩当量概率Miner疲劳累积损伤准则[D]. 南京: 南京航空航天大学, 2014

    JI Y F. Statistical Miner's rule based on equivalent statistical moment of fatigue damage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese)
    [14] 李斌潮, 唐靖, 殷之平. 基于频率雨流计数法的发动机振动疲劳载荷谱编制[J]. 航空工程进展, 2021, 12(1): 24-29. doi: 10.16615/j.cnki.1674-8190.2021.01.003

    LI B C, TANG J, YIN Z P. The load spectrum compilation of engine vibration fatigue based on frequency rain-flow counting method[J]. Advances in Aeronautical Science and Engineering, 2021, 12(1): 24-29. (in Chinese) doi: 10.16615/j.cnki.1674-8190.2021.01.003
    [15] 赵霞军, 张伟, 赵铭. 机载电子设备随机振动频域法疲劳仿真分析[J]. 西安航空学院学报, 2019, 37(3): 48-52. doi: 10.3969/j.issn.1008-9233.2019.03.009

    ZHAO X J, ZHANG W, ZHAO M. Simulated analysis of random vibration fatigue of an electronic equipment based on frequency domain method[J]. Journal of Xi'an Aeronautical University, 2019, 37(3): 48-52. (in Chinese) doi: 10.3969/j.issn.1008-9233.2019.03.009
    [16] 孙钰, 袁强, 温小飞, 等. 基于雨流计数法及Corten Dolan准则的轴承疲劳寿命预测[J]. 船舶工程, 2020, 42(1): 68-73.

    SUN Y, YUAN Q, WEN X F, et al. Prediction of bearing fatigue life based on rain-flow counting method and Corten Dolan criterion[J]. Ship Engineering, 2020, 42(1): 68-73. (in Chinese)
    [17] 秦瑶, 纵文斌, 张伟伟, 等. 基于雨流计数法的压缩机曲轴疲劳寿命分析[J]. 压缩机技术, 2015(6): 1-6. doi: 10.3969/j.issn.1006-2971.2015.06.001

    QIN Y, ZONG W B, ZHANG W W, et al. The compressor crankshaft fatigue life analysis based on rain flow count method[J]. Compressor Technology, 2015(6): 1-6. (in Chinese) doi: 10.3969/j.issn.1006-2971.2015.06.001
    [18] RYCHLIK I, GUPTA S. Rain-flow fatigue damage for transformed Gaussian loads[J]. International Journal of Fatigue, 2007, 29(3): 406-420. doi: 10.1016/j.ijfatigue.2006.05.006
    [19] 徐敏敏, 杨春兰, 段月星, 等. 基于雨流计数法的疲劳寿命预测[J]. 机械设计与研究, 2016, 32(5): 184-187. doi: 10.13952/j.cnki.jofmdr.2016.0217

    XU M M, YANG C L, DUAN Y X, et al. Fatigue life prediction based on rain-flow counting method[J]. Machine Design & Research, 2016, 32(5): 184-187. (in Chinese) doi: 10.13952/j.cnki.jofmdr.2016.0217
    [20] 王陶, 王良模, LI T, 等. 基于真实路谱再现的商用车驾驶室疲劳破坏[J]. 华中科技大学学报(自然科学版), 2017, 45(5): 61-66. doi: 10.13245/j.hust.170512

    WANG T, WANG L M, LI T, et al. Fatigue failure assessment based on loading reproduction for commercial vehicle cab[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2017, 45(5): 61-66. (in Chinese) doi: 10.13245/j.hust.170512
    [21] 张冰战, 牛占占, 邰丽君. 实测载荷谱下传动轴疲劳寿命研究[J]. 机械设计与制造, 2020(10): 119-122. doi: 10.3969/j.issn.1001-3997.2020.10.027

    ZHANG B Z, NIU Z Z, TAI L J. Fatigue life research of transmission shaft based on testing load[J]. Machinery Design & Manufacture, 2020(10): 119-122. (in Chinese) doi: 10.3969/j.issn.1001-3997.2020.10.027
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  66
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回