留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时序溯源的嵌入式数控系统软件可靠性研究

游达章 许文俊 张业鹏

游达章,许文俊,张业鹏. 时序溯源的嵌入式数控系统软件可靠性研究[J]. 机械科学与技术,2023,42(5):779-784 doi: 10.13433/j.cnki.1003-8728.20220029
引用本文: 游达章,许文俊,张业鹏. 时序溯源的嵌入式数控系统软件可靠性研究[J]. 机械科学与技术,2023,42(5):779-784 doi: 10.13433/j.cnki.1003-8728.20220029
YOU Dazhang, XU Wenjun, ZHANG Yepeng. Research on Software Reliability of Embedded CNC System Using Time Sequence Traceability[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 779-784. doi: 10.13433/j.cnki.1003-8728.20220029
Citation: YOU Dazhang, XU Wenjun, ZHANG Yepeng. Research on Software Reliability of Embedded CNC System Using Time Sequence Traceability[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 779-784. doi: 10.13433/j.cnki.1003-8728.20220029

时序溯源的嵌入式数控系统软件可靠性研究

doi: 10.13433/j.cnki.1003-8728.20220029
基金项目: 国家自然科学基金项目(51875180)
详细信息
    作者简介:

    许文俊:游达章(1975−),教授,博士,研究方向为数控技术、故障预测与可靠性技术,yodazhag@163.com

  • 中图分类号: TG659

Research on Software Reliability of Embedded CNC System Using Time Sequence Traceability

  • 摘要: 嵌入式数控软件的可靠性是一个重要问题,由于其包含电机驱动、插补中断等诸多模块,程序运行逻辑复杂,软件各模块的执行顺序具有随机性,软件系统可靠性评估困难。采用马氏链模型开展嵌入式数控软件的可靠性评估,提出时序溯源的方法,重溯程序运行时序图,构建运行剖面,量化转移概率;采用时间补偿的程序运行逻辑恢复方法,消除关键点数据的监测、输出对系统运行实时性影响,还原CPU在时间轴上的运行逻辑顺序。最后通过实例验证该方法的可行性。
  • 图  1  串口监测信息

    图  2  CPU运行时序图

    图  3  程序执行逻辑调整示意图

    图  4  调整后的CPU运行时序图

    图  5  模块运行剖面图

    表  1  各功能模块对应数字序号

    功能模块序号
    主任务模块 1
    译码模块 2
    路径预处理模块 3
    速度规划模块 4
    加减速模块 5
    插补模块 6
    前台中断 7
    下载: 导出CSV

    表  2  各功能模块的运行时间及比例

    功能模块时间${t_i}$/μs比例${k_i}$/%
    主任务模块 31.10 6.310
    译码模块 56.61 11.485
    路径预处理模块 0.63 0.128
    速度规划模块 72.99 14.808
    加减速模块 233.30 47.332
    插补模块 92.02 18.669
    前台中断 6.25 1.268
    总时间 492.90 1
    下载: 导出CSV
  • [1] PENG C, MENG Y J, LAN L Y. Study on software reliability of numerical control system[J]. Applied Mechanics and Materials, 2013, 278-280: 2085-2089. doi: 10.4028/www.scientific.net/AMM.278-280.2085
    [2] GU Y, WANG Y Q, LIN J Q, et al. Fault location in CNC system software based on the architecture expansion[J]. Tehnički Vjesnik, 2017, 24(2): 619-625.
    [3] GU Y K, ZHANG J, SHEN Y J, et al. Fault tree analysis method based on probabilistic model checking and discrete time Markov Chain[J]. Journal of Industrial and Production Engineering, 2019, 36(3): 146-153. doi: 10.1080/21681015.2019.1645050
    [4] SINGH L K, VINOD G, TRIPATHI A K. Approach for parameter estimation in Markov model of software reliability for early prediction: a case study[J]. IET Software, 2015, 9(3): 65-75. doi: 10.1049/iet-sen.2014.0108
    [5] 吴军, 邵新宇, 邓超. 隐马尔科夫链模型在装备运行可靠性预测中的应用[J]. 中国机械工程, 2010, 21(19): 2345-2349.

    WU J, SHAO X Y, DENG C. A HMC-based equipment operation reliability prediction with multiple observation sequences[J]. China Mechanical Engineering, 2010, 21(19): 2345-2349. (in Chinese)
    [6] 张文秀, 韩肖清, 宋述勇, 等. 计及源-网-荷不确定性因素的马尔科夫链风电并网系统运行可靠性评估[J]. 电网技术, 2018, 42(3): 762-771. doi: 10.13335/j.1000-3673.pst.2017.1475

    ZHANG W X, HAN X Q, SONG S Y, et al. Operational reliability evaluation of wind integrated power systems based on Markov Chain considering uncertainty factors of Source-Grid-Load[J]. Power System Technology, 2018, 42(3): 762-771. (in Chinese) doi: 10.13335/j.1000-3673.pst.2017.1475
    [7] CALINESCU R, GHEZZI C, JOHNSON K, et al. Formal verification with confidence intervals to establish quality of service properties of software systems[J]. IEEE Transactions on Reliability, 2016, 65(1): 107-125. doi: 10.1109/TR.2015.2452931
    [8] 周一耒, 于海波, 钟浩. 基于字节码插桩的多线程调试工具[J]. 计算机工程, 2016, 42(11): 83-88. doi: 10.3969/j.issn.1000-3428.2016.11.014

    ZHOU Y L, YU H B, ZHONG H. Multithreaded debugging tool based on bytecode instrumentation[J]. Computer Engineering, 2016, 42(11): 83-88. (in Chinese) doi: 10.3969/j.issn.1000-3428.2016.11.014
    [9] LEE J, KANG S, KEUM C. Architecture-based software testing[J]. International Journal of Software Engineering and Knowledge Engineering, 2018, 28(1): 57-77. doi: 10.1142/S0218194018500031
    [10] 钱超, 史跃东, 王校锋, 等. 基于马尔科夫模型的船舶设备多状态系统可靠性分析方法[J]. 船舶工程, 2017, 39(4): 57-60. doi: 10.13788/j.cnki.cbgc.2017.04.057

    QIAN C, SHI Y D, WANG X F, et al. Reliability analysis method of marine equipment multi-state system based on Markov model[J]. Ship Engineering, 2017, 39(4): 57-60. (in Chinese) doi: 10.13788/j.cnki.cbgc.2017.04.057
    [11] SINGH L, RAJPUT H, VINOD G, et al. Computing transition probability in Markov Chain for early prediction of software reliability[J]. Quality and Reliability Engineering International, 2016, 32(3): 1253-1263. doi: 10.1002/qre.1793
    [12] 唐佩佳, 谢永杰, 吴安波, 等. 基于马尔可夫链的构件软件可靠性评估模型[J]. 计算机应用, 2016, 36(S2): 262-265.

    TANG P J, XIE Y J, WU A B, et al. Reliability evaluation model based on Markov chain for component-based software[J]. Journal of Computer Applications, 2016, 36(S2): 262-265. (in Chinese)
    [13] 黄志刚, 谢锋云. 基于广义马尔科夫链模型的动柔度预测[J]. 机床与液压, 2014, 42(24): 67-70. doi: 10.3969/j.issn.1001-3881.2014.24.013

    HUANG Z G, XIE F Y. Dynamic compliance prediction based on generalized Markov Chain model[J]. Hydromechatronics Engineering, 2014, 42(24): 67-70. (in Chinese) doi: 10.3969/j.issn.1001-3881.2014.24.013
    [14] 洪范. 系统软件可靠性[M]. 李璐祎, 译. 北京: 国防工业出版社, 2014

    PHAM H. System software reliability[M]. LI L Y, trans. Beijing: National Defense Industry Press, 2014. (in Chinese)
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  102
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回