留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂曲面慢刀伺服加工刀具半径补偿算法

周玮 康敏 郭航言

周玮,康敏,郭航言. 复杂曲面慢刀伺服加工刀具半径补偿算法[J]. 机械科学与技术,2023,42(5):736-746 doi: 10.13433/j.cnki.1003-8728.20220018
引用本文: 周玮,康敏,郭航言. 复杂曲面慢刀伺服加工刀具半径补偿算法[J]. 机械科学与技术,2023,42(5):736-746 doi: 10.13433/j.cnki.1003-8728.20220018
ZHOU Wei, KANG Min, GUO Hangyan. Tool Radius Compensation Algorithm for Slow Tool Servo Turning on Complex Surface[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 736-746. doi: 10.13433/j.cnki.1003-8728.20220018
Citation: ZHOU Wei, KANG Min, GUO Hangyan. Tool Radius Compensation Algorithm for Slow Tool Servo Turning on Complex Surface[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 736-746. doi: 10.13433/j.cnki.1003-8728.20220018

复杂曲面慢刀伺服加工刀具半径补偿算法

doi: 10.13433/j.cnki.1003-8728.20220018
基金项目: 江苏省研究生科研与实践创新计划(KYCX19_0607)
详细信息
    作者简介:

    周玮(1996−),硕士研究生,研究方向为数控加工技术,1506036510@qq.com

    通讯作者:

    康敏,教授,博士生导师,博士,kangmin@njau.edu.cn

  • 中图分类号: TH164

Tool Radius Compensation Algorithm for Slow Tool Servo Turning on Complex Surface

  • 摘要: 为提高复杂曲面元件的面形加工精度,进行了慢刀伺服车削刀具路径规划,研究了刀具半径补偿算法。本文通过分析法向补偿算法和Z向补偿算法的不足,提出一种基于弦长垂线的刀具补偿算法,以环曲面为例进行仿真、车削加工验证该算法的可行性。仿真结果表明弦长垂线刀具补偿算法下所求刀位点精度较高,可实现X轴匀速运动。试验结果表明弦长垂线刀具补偿算法下面形加工精度优于法向补偿算法和Z向补偿算法,表面粗糙度受刀具补偿算法影响较小。
  • 图  1  慢刀伺服数控机床结构示意图

    图  2  刀具补偿流程图

    图  3  刀具圆弧半径补偿原理图

    图  4  Lc与插值误差关系图

    图  5  弦长垂线刀具补偿原理图

    图  6  刀触点生成算法离散误差

    图  7  环曲面三维示意图

    图  8  环曲面理论面形及刀触点轨迹分布

    图  9  等参数下两种算法下Lc分布范围

    图  10  等参数下两种算法下Lc分布范围

    图  11  等参数下两种算法下面形精度

    图  12  环曲面刀具路径仿真

    图  13  复杂曲面实际加工示意图

    图  14  两种算法下面形精度图

    图  15  弦长垂线补偿算法下环曲面表面粗糙度

    表  1  仿真参数表

    参数名参数值
    离散角Δθ
    刀具圆弧半径Rt 0.5 mm
    每圈进给量af 0.5 mm/r
    两相邻点运动时间ΔT 6 ms
    切削深度ap 0.1 mm
    工件半径Rg 20 mm
    环曲面正交弧半径R 140 mm
    环曲面基弧半径a 100 mm
    下载: 导出CSV

    表  2  三坐标测量机设备参数表

    测量方式示值误差/μm探测误/μm环境温度/℃
    点触发式2.7 + L/2502.720 ± 2
    下载: 导出CSV
  • [1] 董青青. 慢刀伺服车削关键技术研究[D]. 长春: 长春工业大学, 2020

    DONG Q Q. Research on key technology of slow tool servo[D]. Changchun: Changchun University of Technology, 2020.(in Chinese)
    [2] 邱昕洋, 张彦钦, 王宏斌. 慢刀伺服加工环曲面的刀具路径规划方法[J]. 国防科技大学学报, 2020, 42(3): 121-127. doi: 10.11887/j.cn.202003016

    QIU X Y, ZHANG Y Q, WANG H B. Tool path planning method for machining toric surface based on slow tool servo technology[J]. Journal of National University of Defense Technology, 2020, 42(3): 121-127. (in Chinese) doi: 10.11887/j.cn.202003016
    [3] KONG L B, MA Y G, REN M J, et al. Generation and characterization of ultra-precision compound freeform surfaces[J]. Science Progress, 2019, 103(1): 003685041988011
    [4] LI H, LI L K, NAPLES N J, et al. Micro-optical fabrication by ultraprecision diamond machining and precision molding[J]. Frontiers of Mechanical Engineering, 2017, 12(2): 181-192. doi: 10.1007/s11465-017-0444-z
    [5] 牛恒泰, 康敏, 王兴盛, 等. 渐进多焦点镜片的设计与慢刀伺服车削[J]. 中国机械工程, 2019, 30(6): 722-727. doi: 10.3969/j.issn.1004-132X.2019.06.014

    NIU H T, KANG M, WANG X S, et al. Design and slow tool servo turning of progressive-addition lenses[J]. China Mechanical Engineering, 2019, 30(6): 722-727. (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.06.014
    [6] WANG D F, SUI Y X, YANG H J, et al. Adaptive spiral tool path generation for diamond turning of large aperture freeform optics[J]. Materials, 2019, 12(5): 810. doi: 10.3390/ma12050810
    [7] KHAGHANI A, CHENG K. Investigation on multi-body dynamics based approach to the toolpath generation for ultraprecision machining of freeform surfaces[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2020, 234(3): 571-583. doi: 10.1177/0954405419863961
    [8] 马富荣, 靳伍银, 王安. 复杂曲面慢刀伺服加工刀具半径补偿方法[J]. 机械设计与制造, 2019(7): 189-192. doi: 10.3969/j.issn.1001-3997.2019.07.047

    MA F R, JIN W Y, WANG A. The method of tool radius compensation for complex surface by using slow tool servo processing[J]. Machinery Design & Manufacture, 2019(7): 189-192. (in Chinese) doi: 10.3969/j.issn.1001-3997.2019.07.047
    [9] 李佳伟, 杜文浩, 韩长庆. 慢刀伺服车削刀具半径定向补偿的分段逼近求解[J]. 中国机械工程, 2020, 31(17): 2017-2023.

    LI J W, DU W H, HAN C Q. Directional tool radius compensation solution of STS turning based on segment approximation[J]. China Mechanical Engineering, 2020, 31(17): 2017-2023. (in Chinese)
    [10] 关朝亮, 铁贵鹏, 尹自强. 光学阵列器件的慢刀伺服车削加工技术[J]. 国防科技大学学报, 2009, 31(4): 31-35. doi: 10.3969/j.issn.1001-2486.2009.04.007

    GUAN C L, TIE G P, YIN Z Q. Fabrication of array lens optical component by using of slow tool servo diamond turning[J]. Journal of National University of Defense Technology, 2009, 31(4): 31-35. (in Chinese) doi: 10.3969/j.issn.1001-2486.2009.04.007
    [11] JI S J, LI J F, ZHAO J, et al. Ultra-precision machining of a compound sinusoidal grid surface based on slow tool servo[J]. Materials, 2018, 11(6): 1001. doi: 10.3390/ma11061001
    [12] 牛恒泰. 复杂曲面慢刀伺服车削刀具路径规划及测量技术研究[D]. 南京: 南京农业大学, 2018

    NIU H T. Research on slow tool servo turning and form accuracy measuring for complex surface[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
    [13] 蔡洪彬, 史国权. 主动控制加工误差慢刀伺服车削轨迹生成方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1221-1227. doi: 10.13229/j.cnki.jdxbgxb20180703

    CAI H B, SHI G Q. Tool path generation of slow tool servo for active control machining error[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1221-1227. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb20180703
    [14] CHEN X, KANG M, WANG X S, et al. Tool path optimal design for slow tool servo turning of complex optical surface[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2017, 231(5): 825-837. doi: 10.1177/0954405416654192
    [15] GUO H Y, KANG M, ZHOU W, et al. A new optimal method of tool path generation for slow tool servo turning of complex surface[J]. Manufacturing Technology, 2020, 20(6): 733-747. doi: 10.21062/mft.2020.115
    [16] SUN Z W, TO S, ZHANG G Q, et al. Flexible fabrication of micro-optics arrays with high-aspect-ratio by an offset-tool-servo diamond machining system[J]. Optics Express, 2019, 27(7): 9631-9646. doi: 10.1364/OE.27.009631
    [17] WEI Y, ZHAI P, CHEN X Y, et al. Study on design and diamond turning of optical freeform surface for progressive addition lenses[J]. Mathematical Problems in Engineering, 2020, 2020: 2850606.
    [18] ZHU Z W, TO S, ZHU W L, et al. Cutting forces in fast-/slow tool servo diamond turning of micro-structured surfaces[J]. International Journal of Machine Tools and Manufacture, 2019, 136: 62-75. doi: 10.1016/j.ijmachtools.2018.09.003
    [19] LI D, QIAO Z, WALTON K, et al. Theoretical and experimental investigation of surface topography generation in slow tool servo ultra-precision machining of freeform surfaces[J]. Materials, 2018, 11(12): 2566. doi: 10.3390/ma11122566
    [20] 关朝亮, 陈燕生, 彭文强. 自由曲面慢刀伺服车削及刀具参数确定方法[J]. 国防科技大学学报, 2012, 34(5): 102-106. doi: 10.3969/j.issn.1001-2486.2012.05.020

    GUAN C L, CHEN Y S, PENG W Q. Freeform surface STS turning and tool geometry parameters determination method[J]. Journal of National University of Defense Technology, 2012, 34(5): 102-106. (in Chinese) doi: 10.3969/j.issn.1001-2486.2012.05.020
    [21] 牛恒泰, 康敏, 何成奎, 等. 离散曲面慢刀伺服车削刀具路径规划[J]. 机械科学与技术, 2018, 37(5): 721-728. doi: 10.13433/j.cnki.1003-8728.2018.0511

    NIU H T, KANG M, HE C K, et al. Cutting path plan of discrete surface for slow tool servo turning[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 721-728. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2018.0511
    [22] MISHRA V, BURADA D R, PANT K K, et al. Form error compensation in the slow tool servo machining of freeform optics[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-4): 1623-1635. doi: 10.1007/s00170-019-04359-w
    [23] 何改云, 刘欣, 刘佩佩, 等. 基于分割球面逼近和差分进化的复杂曲面轮廓度误差评定[J]. 中国机械工程, 2014, 25(2): 152-156. doi: 10.3969/j.issn.1004-132X.2014.02.003

    HE G Y, LIU X, LIU P P, et al. Evaluation of complex surface profile errors based on subdivision and sphere approximation method and differential evolution algorithm[J]. China Mechanical Engineering, 2014, 25(2): 152-156. (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.02.003
    [24] 刘峻峰, 何小妹, 黄翔, 等. ICP算法在叶型点云数据配准中的应用[J]. 航空制造技术, 2019, 62(12): 79-82. doi: 10.16080/j.issn1671-833x.2019.12.079

    LIU J F, HE X M, HUANG X, et al. Application of ICP algorithm in data registration of blade profile point cloud[J]. Aeronautical Manufacturing Technology, 2019, 62(12): 79-82. (in Chinese) doi: 10.16080/j.issn1671-833x.2019.12.079
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  79
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回