留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的车辆排气系统的可靠性优化设计方法

赵闵清 鲁宇明 李成林 涂传明 谢惠华

赵闵清,鲁宇明,李成林, 等. 一种新的车辆排气系统的可靠性优化设计方法[J]. 机械科学与技术,2023,42(3):432-438 doi: 10.13433/j.cnki.1003-8728.20200648
引用本文: 赵闵清,鲁宇明,李成林, 等. 一种新的车辆排气系统的可靠性优化设计方法[J]. 机械科学与技术,2023,42(3):432-438 doi: 10.13433/j.cnki.1003-8728.20200648
ZHAO Minqing, LU Yuming, LI Chenglin, TU Chuanming, XIE Huihua. A New Reliability Optimization Design Method of Vehicle Exhaust System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 432-438. doi: 10.13433/j.cnki.1003-8728.20200648
Citation: ZHAO Minqing, LU Yuming, LI Chenglin, TU Chuanming, XIE Huihua. A New Reliability Optimization Design Method of Vehicle Exhaust System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 432-438. doi: 10.13433/j.cnki.1003-8728.20200648

一种新的车辆排气系统的可靠性优化设计方法

doi: 10.13433/j.cnki.1003-8728.20200648
基金项目: 国家自然科学基金项目(61866025)、江西省教育厅科技项目(GJJ170572)及江西省重点研发项目(20192BBGL70048)
详细信息
    作者简介:

    赵闵清(1993−),中级工程师,硕士,研究方向为优化设计算法、应力疲劳分析,zhao.minqing@jiangxi-isuzu.cn

    通讯作者:

    鲁宇明,教授,硕士生导师,luyuming69@163.com

  • 中图分类号: TH17

A New Reliability Optimization Design Method of Vehicle Exhaust System

  • 摘要: 针对以总布置为目标的传统设计方法不能够满足排气系统可靠性要求,提出一种基于改进蚁群算法的排气系统可靠性优化设计方法。通过对概率因子优化、挥发条件动态处理机制以及引入最大-最小蚂蚁系统3个方面对传统蚁群算法进行改进。结合CAE仿真模拟计算、应力谱采集以及二次响应面拟合法构建可靠性寿命预测模型,利用改进蚁群算法进行优化设计求解。结果表明,排气系统所受最大应力由原来的175.11 MPa减小为158.92 MPa,可靠性寿命计算值由5 623.69 h提升至6 165.95 h。该方法有效提升排气系统可靠性寿命。
  • 图  1  排气系统有限元模型

    图  2  排气系统应力仿真图

    图  3  3个吊钩应变测试数据

    图  4  3个吊钩雨流计算分析结果

    图  5  排气系统笛卡尔坐标系示意图

    图  6  排气系统最大响应面拟合精度图

    图  7  应变测试照片

    图  8  优化后3个吊钩应变测试数据

    表  1  CAE材料信息

    材料名称密度/(kg·m−3E/GPaλσ0.2 /Pa
    Q235A/B 7850 200 0.3 235
    SUS304/441 7750 193 0.31 207
    SUH409 7750 193 0.31 207
    下载: 导出CSV

    表  2  损伤耦合值计算结果

    应力/
    MPa
    应力幅
    Sa
    应力均
    Sm
    循环次
    ni
    损伤
    (1/Ni
    总损伤
    ni/Ni
    1134.512.6313.273×10−63.273×10−6
    2114.40112.6361.712×10−61.027×10−5
    396.80212.63518.871×10−74.478×10−5
    476.6912.631893.459×10−76.538×10−5
    557.412.635201.086×10−75.647×10−5
    636.4612.6324151.767×10−84.267×10−5
    719.0812.63104451.325×10−91.384×10−5
    89.5012.63220718.140×10−111.797×10−6
    93.7712.631336002.020×10−122.699×10−7
    下载: 导出CSV

    表  3  位置坐标约束范围

    参数设计原始值优化变更范围/mm
    前吊钩位置尺寸A0 0 (−10.0,15.5)
    中左吊钩位置尺寸A1 573 (562.0,590.4)
    中右吊钩位置尺寸A2 573 (567.0,584.7)
    下载: 导出CSV

    表  4  排气系统仿真最大应力值

    序号A0/ mmA1/ mmA2/ mmCAE计算值/ MPa
    10.0584.4569.796.9
    2−2.9580.3576.2102.9
    310.7573.5583.6117.5
    4−7.6585.6579.3104.2
    512.4563.8574.9156.8
    $\vdots $$\vdots $$\vdots $$\vdots $$\vdots $
    50−8.6589.6578.2110.5
    下载: 导出CSV

    表  5  排气系统可靠性优化结果对比

    算法A1, A2, A3 / mm最大应力 σmax应力−寿命法
    计算值/ h
    初始值(0, 573, 573)175.115623.69
    IACC(−10, 562, 571.7)158.926165.95
    ACC(−9.5, 568.3, 572.5)165.305984.75
    GA(−8.3, 569.3, 569.8)166.265904.32
    PSO(−10.3, 563.6, 572.6)160.666067.54
    SA(−9.8, 570.3, 574.9)167.635897.45
    下载: 导出CSV

    表  6  优化前后试验结果数据对比

    状态应变极限值/μE
    吊钩A0吊钩A1吊钩A2
    优化前378.332.02214.8
    优化后274.632.01158.1
    下载: 导出CSV
  • [1] 陈佳鲜, 毛文涛, 刘京, 等. 基于深度时序特征迁移的轴承剩余寿命预测方法[J]. 控制与决策, 2021, 36(7): 1699-1706.

    CHEN J X, MAO W T, LIU J, et al. Remaining useful life prediction of bearing based on deep temporal feature transfer[J]. Control and Decision, 2021, 36(7): 1699-1706. (in Chinese)
    [2] 吴道君. 改进蚁群算法的船舶软件系统可靠性评价[J]. 舰船科学技术, 2020, 42(4): 166-168

    WU D J. Reliability evaluation of software system based on improved ant colony algorithm[J]. Ship Science and Technology, 2020, 42(4): 166-168 (in Chinese)
    [3] LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11.
    [4] REN L, SUN Y Q, CUI J, et al. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks[J]. Journal of Manufacturing Systems, 2018, 48: 71-77. doi: 10.1016/j.jmsy.2018.04.008
    [5] 刘洪伟, 刘杰. 考虑可靠性鲁棒的结构非概率优化设计方法研究[J]. 机械科学与技术, 2020, 39(4): 581-589.

    LIU H W, LIU J. Nonprobability-based design optimization considering reliability robustness for structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 581-589. (in Chinese)
    [6] 刘勤. 特种车辆结构耐久性分析与优化设计方法研究[D]. 沈阳: 东北大学, 2017: 22-25

    LIU Q. Research on structure durability analysis and optimization design approachs for special vehicle[D]. Shenyang: Northeastern University, 2017: 22-25. (in Chinese)
    [7] SURESH S. Fatigue of materials[M]. Cambridge: Cambridge University Press, 1998
    [8] 路怀华. 基于响应面法的车身结构声学性能可靠性优化设计[D]. 长沙: 湖南大学, 2013: 27-29

    LU H H. Reliability-based optimization of car body's acoustic performance based on response surface method[D]. Changsha: Hunan University, 2013: 27-29. (in Chinese)
    [9] 杨广雪. 高速列车车轴旋转弯曲作用下微动疲劳损伤研究[D]. 北京: 北京交通大学, 2010: 14

    YANG G X. Research on damage of fretting fatigue of the axle used in high speed trains under rotating bending[D]. Beijing: Beijing Jiaotong University, 2010: 14. (in Chinese)
    [10] 龚雨兵. 基于改进蚁群算法的连续型桁架结构优化设计研究[J]. 机械科学与技术, 2014, 33(6): 807-810.

    GONG Y B. Optimization design of continuous truss structures based on an improved ant colony optimization algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(6): 807-810. (in Chinese)
    [11] 刘蓉, 杨帆, 张衡. 基于改进混沌蚁群算法的无人机航路规划[J]. 指挥信息系统与技术, 2018, 9(6): 41-48.

    LIU R, YANG F, ZHANG H. Path planning for UAV based on improved chaotic ant colony algorithm (CACA)[J]. Command Information System and Technology, 2018, 9(6): 41-48. (in Chinese)
    [12] 徐义春, 肖人彬. 用蚁群算法求解带平衡约束的圆形布局问题[J]. 控制与决策, 2008, 23(1): 25-29.

    XU Y C, XIAO R B. Ant colony algorithm for layout optimization with equilibrium constraints[J]. Control and Decision, 2008, 23(1): 25-29. (in Chinese)
    [13] 程世娟, 卢伟, 何平. 蚁群算法在复杂系统可靠性优化中的应用[J]. 工程设计学报, 2009, 16(3): 178-181.

    CHENG S J, LU W, HE P. Application of ant colony algorithm in reliability optimization of complex system[J]. Journal of Engineering Design, 2009, 16(3): 178-181. (in Chinese)
    [14] 孙功武, 苏义鑫, 顾轶超, 等. 基于改进蚁群算法的水面无人艇路径规划[J]. 控制与决策, 2021, 36(4): 847-856.

    SUN G W, SU Y X, GU Y C, et al. Path planning for unmanned surface vehicle based on improved ant colony algorithm[J]. Control and Decision, 2021, 36(4): 847-856. (in Chinese)
    [15] 周叔阳, 韩志仁, 郭喜锋, 等. 模拟退火算法在预连接孔排布中的应用研究[J]. 机械科学与技术, 2019, 38(6): 959-962.

    ZHOU S Y, HAN Z R, GUO X F, et al. Application of simulated annealing algorithm in arrangement of pre-connected hole[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(6): 959-962. (in Chinese)
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  81
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回