留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降雨环境下车身表面水相分布特性

殷硕 于梦阁 盛旭高

殷硕,于梦阁,盛旭高. 降雨环境下车身表面水相分布特性[J]. 机械科学与技术,2023,42(3):382-387 doi: 10.13433/j.cnki.1003-8728.20200646
引用本文: 殷硕,于梦阁,盛旭高. 降雨环境下车身表面水相分布特性[J]. 机械科学与技术,2023,42(3):382-387 doi: 10.13433/j.cnki.1003-8728.20200646
YIN Shuo, YU Mengge, SHENG Xugao. Water Phase Distribution Characteristics of Vehicle Body Surface Under Rainfall Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 382-387. doi: 10.13433/j.cnki.1003-8728.20200646
Citation: YIN Shuo, YU Mengge, SHENG Xugao. Water Phase Distribution Characteristics of Vehicle Body Surface Under Rainfall Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 382-387. doi: 10.13433/j.cnki.1003-8728.20200646

降雨环境下车身表面水相分布特性

doi: 10.13433/j.cnki.1003-8728.20200646
基金项目: 国家自然科学基金项目(51705267)与中国博士后科学基金项目(2018M630750)
详细信息
    作者简介:

    殷硕(1997−),硕士研究生,研究方向为车辆空气动力学和系统动力学,yinshuo99999@163.com

    通讯作者:

    于梦阁,副教授,硕士生导师,博士,yumengge0627@163.com

  • 中图分类号: U46

Water Phase Distribution Characteristics of Vehicle Body Surface Under Rainfall Environment

  • 摘要: 本文建立了汽车外流场空气动力学数值计算模型,结合 Lagrangian discrete phase model和Eulerian wall film model两种方法模拟了水相的生成和发展过程。在此基础上,开展不同降雨强度、不同车速条件下的车身表面水相生成计算,研究影响水相分布变化的因素。研究结果表明:在一定的车速和降雨强度条件下,车身水相厚度逐渐增大,最终趋于稳定;当车速一定时,车头、前窗、后窗和侧窗区域水相厚度随降雨强度的增大而增大;当降雨强度一定时,车头、后窗和侧窗水相厚度随车速增大而增大,而前窗水相厚度随车速增大而减小。
  • 图  1  MIRA阶梯背车型尺寸示意图

    图  2  计算区域

    图  3  计算网格

    图  4  尾部流场纵对称面上速度流线图

    图  5  离散相粒子分布情况

    图  6  车身水相分布及变化

    图  7  车身前部表面切应力及涡流分布

    图  8  车头和各车窗区域水相变化

    图  9  不同降雨强度下车头和各车窗区域水相厚度变化

    图  10  不同车速下车头和侧窗区域水相厚度变化

    表  1  网格独立性验证

    网格
    密度
    网格
    数量/万
    数值
    计算
    TJ-2相对
    误差/%
    IVK相对
    误差/%
    HD-2相对
    误差/%
    粗网格8770.3022.000.984.43
    标准
    网格
    1 2870.3040.2962.700.3050.330.3163.79
    细网格1 8920.3032.300.654.11
    下载: 导出CSV
  • [1] GAYLARD A P, FAGG M, BANNISTER M, et al. Modelling A-pillar water overflow: Developing CFD and experimental methods[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5(2): 789-800. doi: 10.4271/2012-01-0588
    [2] KABANOVS A, GARMORY A, PASSMORE M, et al. Computational simulations of unsteady flow field and spray impingement on a simplified automotive geometry[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 171: 178-195.
    [3] GAYLARD A P, PITMAN J, JILESEN J, et al. Insights into rear surface contamination using simulation of road spray and aerodynamics[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(2): 673-681. doi: 10.4271/2014-01-0610
    [4] GAYLARD A P, DUNCAN B. Simulation of rear glass and body side vehicle soiling by road sprays[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(1): 184-196. doi: 10.4271/2011-01-0173
    [5] 辛俐, 兰巍, 刘江, 等. 汽车涉水车身表面污染仿真及控制[J]. 吉林大学学报(工学版), 2019, 49(6): 1786-1794. doi: 10.13229/j.cnki.jdxbgxb20180403

    XIN L, LAN W, LIU J, et al. Simulation and control of pollution on automobile body surface during wading[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1786-1794. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb20180403
    [6] 廖磊. 车轮溅水及其对车身表面污染的仿真研究[D]. 长春: 吉林大学, 2014

    LIAO L. Numerical research on wheel spray and related body soiling[D]. Jilin: Jilin University, 2014. (in Chinese)
    [7] JILESEN J, GAYLARD A, SPRUSS I, et al. Advances in modelling A-pillar water overflow[C]//SAE 2015 World Congress & Exhibition. Cobo Center, Detroit MI, United States: SAE, 2015
    [8] KARBON K J, LONGMAN S E. Automobile exterior water flow analysis using CFD and wind tunnel visualization[C]//International Congress & Exposition. United States: SAE, 1998
    [9] KRUSE N, CHEN K H. Exterior water management using a custom Euler-Lagrange simulation approach[C]//SAE World Congress & Exhibition. United States: SAE, 2007
    [10] 何忆斌, 谷正气, 吴军, 等. 三方程在汽车外流场仿真计算中的应用[J]. 机械工程学报, 2008, 44(1): 184-189. doi: 10.3321/j.issn:0577-6686.2008.01.032

    HE Y B, GU Z Q, WU J, et al. Application of three-equation turbulence model in numerical simulation of vehicle external flow field[J]. Journal of Mechanical Engineering, 2008, 44(1): 184-189. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.01.032
    [11] 杨金广, 吴虎. 双方程k-ω SST湍流模型的显式耦合求解及其在叶轮机械中的应用[J]. 航空学报, 2014, 35(1): 116-124.

    YANG J G, WU H. Explicit coupled solution of two-equation k-ω SST turbulence model and its application in turbomachinery flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 116-124. (in Chinese)
    [12] 于梦阁, 李海庆, 刘加利, 等. 强风雨环境下高速列车空气动力学性能研究[J]. 机械工程学报, 2020, 56(4): 185-192. doi: 10.3901/JME.2020.04.185

    YU M G, LI H Q, LIU J L, et al. Study on the aerodynamic performance of the high-speed train under strong wind and rainfall environment[J]. Journal of Mechanical Engineering, 2020, 56(4): 185-192. (in Chinese) doi: 10.3901/JME.2020.04.185
    [13] LI H Q, YU M G, ZHANG Q, et al. A numerical study of the aerodynamic characteristics of a high-speed train under the effect of crosswind and rain[J]. Fluid Dynamics & Materials Processing, 2020, 16(1): 77-90.
    [14] MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208. doi: 10.1017/S0022112072001806
    [15] BEST A C. Empirical formulae for the terminal velocity of water drops falling through the atmosphere[J]. Quarterly Journal of the Royal Meteorological Society, 1950, 76(329): 302-311. doi: 10.1002/qj.49707632905
    [16] O'ROURKE P J, AMSDEN A A. A spray/wall interaction submodel for the KIVA-3 wall film model[C]//SAE 2000 World Congress. United States: SAE, 2000
    [17] HAGEMEIER T, HARTMANN M, THÉVENIN D. Practice of vehicle soiling investigations: A review[J]. International Journal of Multiphase Flow, 2011, 37(8): 860-875. doi: 10.1016/j.ijmultiphaseflow.2011.05.002
    [18] 李延, 郭涛, 常红亮. 基于欧拉壁面液膜模型的三维热气防冰腔数值仿真[J]. 北京航空航天大学学报, 2018, 44(5): 959-966. doi: 10.13700/j.bh.1001-5965.2017.0362

    LI Y, GUO T, CHANG H L. Numerical simulation of 3D hot-air anti-icing chamber based on Eulerian wall film model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 959-966. (in Chinese) doi: 10.13700/j.bh.1001-5965.2017.0362
    [19] 周华, 杨志刚, 朱晖. 基于整车风洞试验的MIRA车型数值计算[J]. 吉林大学学报(工学版), 2019, 49(4): 1043-1053. doi: 10.13229/j.cnki.jdxbgxb20180226

    ZHOU H, YANG Z G, ZHU H. Aerodynamic calculation of MIRA model correlated with wind tunnel test[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1043-1053. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb20180226
    [20] 庞加斌, 林志兴, 余卓平, 等. TJ-2风洞汽车模型试验的修正方法[J]. 汽车工程, 2002, 24(5): 371-375. doi: 10.3321/j.issn:1000-680X.2002.05.001

    PANG J B, LIN Z X, YU Z P, et al. Correction methods for Automotive model tests in TJ-2 wind tunnel[J]. Automotive Engineering, 2002, 24(5): 371-375. (in Chinese) doi: 10.3321/j.issn:1000-680X.2002.05.001
    [21] WANG Y P, GU Z Q, WANG S, et al. Numerical and experimental investigations on the aerodynamic characteristic of three typical passenger vehicles[J]. Journal of Applied Fluid Mechanics, 2014, 7(4): 659-671.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  77
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-21
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回