留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多带隙联合的声子晶体滤波梁弹性波传播特性

张鑫浩 赵才友 郑钧元 牛亚文 未娜超

张鑫浩,赵才友,郑钧元, 等. 多带隙联合的声子晶体滤波梁弹性波传播特性[J]. 机械科学与技术,2023,42(3):338-344 doi: 10.13433/j.cnki.1003-8728.20200629
引用本文: 张鑫浩,赵才友,郑钧元, 等. 多带隙联合的声子晶体滤波梁弹性波传播特性[J]. 机械科学与技术,2023,42(3):338-344 doi: 10.13433/j.cnki.1003-8728.20200629
ZHANG Xinhao, ZHAO Caiyou, ZHENG Junyuan, NIU Yawen, WEI Nachao. Elastic Wave Propagation Characteristics of a Combined Multi Band Gap Phononic Crystal Filter Beam[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 338-344. doi: 10.13433/j.cnki.1003-8728.20200629
Citation: ZHANG Xinhao, ZHAO Caiyou, ZHENG Junyuan, NIU Yawen, WEI Nachao. Elastic Wave Propagation Characteristics of a Combined Multi Band Gap Phononic Crystal Filter Beam[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 338-344. doi: 10.13433/j.cnki.1003-8728.20200629

多带隙联合的声子晶体滤波梁弹性波传播特性

doi: 10.13433/j.cnki.1003-8728.20200629
基金项目: 国家自然科学基金面上项目(51978585)、高速铁路基础研究联合基金项目(U1734207)及四川省应用基础研究项目(2020YJ0214)
详细信息
    作者简介:

    张鑫浩(1996−),硕士研究生,研究方向为铁路轨道周期结构减振降噪,736948278@qq.com

    通讯作者:

    赵才友,教授,博士生导师,zcy848279@qq.com

  • 中图分类号: MU211

Elastic Wave Propagation Characteristics of a Combined Multi Band Gap Phononic Crystal Filter Beam

  • 摘要: 提出了一种包含Bragg散射、整体局域共振和局部局域共振机理的多带隙联合声子晶体滤波梁,通过传递矩阵法与Bloch定理求得无限周期结构各阶带隙为0 ~ 170 Hz、180 ~ 262.6 Hz、552.3 ~ 597 Hz、974 ~ 1 563 Hz、1 903 ~ 2 667 Hz;并调节结构参数,得出带隙调制规律和带隙机理。同时,与其他3种工况声子晶体梁带隙特征进行对比分析,证明了声子晶体滤波梁在带隙宽度、丰富度以及弹性波衰减率方面均有着相对优势,具备更好的过滤或抑制结构中弹性波的性能。此外,求解近声子晶体滤波梁的振动传递系数,得出在各阶带隙范围内,弹性波的传播存在明显衰减,验证了带隙的存在。最后为探究弹性波在带隙/通带范围内的波动模式,分别提取位于带隙/通带范围梁体位移分布,发现在带隙频率范围内的弹性波沿波动方向快速衰减,表现出带隙特性;通带频率范围内的弹性波无明显变化或衰减,表现出通带特性。
  • 图  1  声子晶体滤波梁实际理想模型

    图  2  声子晶体滤波梁及元胞理论模型

    图  3  声子晶体滤波梁带隙图

    图  4  不同工况的梁元胞模型

    图  5  不同工况下的带隙对比图

    图  6  元胞支撑段长度对带隙的影响

    图  7  连续弹性支撑刚度k对带隙的影响

    图  8  弹簧振子刚度k1对带隙的影响

    图  9  近声子晶体滤波梁的振动传递曲线

    图  10  通带/带隙频率范围内梁体位移分布(位置0.21 m)

    表  1  声子晶体滤波梁的结构及材料参数

    名称ABC
    材料
    弹性模量/GPa 206 71.7 17
    剪切模量/GPa 79.4 26 7
    密度/(kg·m−3 7850 2699 11300
    泊松量 0.29 0.33 0.42
    波束宽度/m 0.015 0.015 0.015
    波束高度/m 0.02 0.02 0.02
    波束长度/m 0.07 0.07 0.07
    剪切系数 0.8 0.8 0.8
    下载: 导出CSV

    表  2  带隙汇总表 Hz

    带隙滤波梁工况1工况2工况3
    1阶 0 ~ 170 91 ~ 200 0 ~ 97.8 0 ~ 92.31
    2阶 180 ~ 262.6 526.8 ~ 743.3 163.7 ~ 211 146.4 ~ 176.7
    3阶 552.3 ~ 597 1214 ~ 1593 542.7 ~ 756 492 ~ 558.6
    4阶 974 ~ 1563 1903 ~ 2667 1221 ~ 1635 947 ~ 1545
    5阶 1903 ~ 2667 0 2198 ~ 2803 1903 ~ 2667
    总带宽 1650.3 1468.8 1337.4 1551.21
    下载: 导出CSV
  • [1] KHELIF A, ADIBI A. Phononic crystals: fundamentals and applications[M]. Berlin: Springer, 2016
    [2] YUAN B, WEN J H, WEN X S. Oblique incidence properties of locally resonant sonic materials with resonance and Bragg scattering effects[J]. Chinese Physics B, 2013, 22(7): 074302. doi: 10.1088/1674-1056/22/7/074302
    [3] LI L, WEN J H, CAI L, et al. Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials[J]. Chinese Physics B, 2013, 22(1): 014301. doi: 10.1088/1674-1056/22/1/014301
    [4] CHEN S B, WEN J H, YU D L, et al. Band gap control of phononic beam with negative capacitance piezoelectric shunt[J]. Chinese Physics B, 2011, 20(1): 014301. doi: 10.1088/1674-1056/20/1/014301
    [5] 沈惠杰, 温激鸿, 郁殿龙, 等. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性[J]. 物理学报, 2009, 58(12): 8357-8363. doi: 10.3321/j.issn:1000-3290.2009.12.038

    SHEN H J, WEN J H, YU D L, et al. Flexural vibration property of periodic pipe system conveying fluid based on Timoshenko beam equation[J]. Acta Physica Sinica, 2009, 58(12): 8357-8363. (in Chinese) doi: 10.3321/j.issn:1000-3290.2009.12.038
    [6] 温激鸿, 王刚, 郁殿龙, 等. 声子晶体振动带隙及减振特性研究[J]. 中国科学 E辑:技术科学, 2008, 51(1): 85-99. doi: 10.1007/s11431-008-0008-x

    WEN J H, WANG G, YU D L, et al. Study on the vibration band gap and vibration attenuation property of phononic crystals[J]. Science in China Series E:Technological Sciences, 2008, 51(1): 85-99. (in Chinese) doi: 10.1007/s11431-008-0008-x
    [7] YU D L, WEN J H, ZHAO H, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid[J]. Journal of Sound and Vibration, 2008, 318(1-2): 193-205. doi: 10.1016/j.jsv.2008.04.009
    [8] WANG P, YI Q, ZHAO C Y, et al. Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms[J]. Archive of Applied Mechanics, 2017, 87(3): 503-519. doi: 10.1007/s00419-016-1207-8
    [9] 易强, 王平, 赵才友, 等. 有砟轨道结构弹性波传播特性研究[J]. 铁道学报, 2019, 41(6): 137-145. doi: 10.3969/j.issn.1001-8360.2019.06.019

    YI Q, WANG P, ZHAO C Y, et al. Study on elastic wave propagation properties of ballast track structure[J]. Journal of the China Railway Society, 2019, 41(6): 137-145. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.06.019
    [10] WANG P, YI Q, ZHAO C Y, et al. Wave propagation control in periodic track structure through local resonance mechanism[J]. Journal of Central South University, 2018, 25(12): 3062-3074. doi: 10.1007/s11771-018-3974-6
    [11] 易强, 王宇航, 高鑫, 等. 轨道交通周期型声屏障带隙特性及其降噪性能[J]. 中南大学学报(自然科学版), 2019, 50(5): 1263-1270.

    YI Q, WANG Y H, GAO X, et al. Band gap properties and noise reduction performances of periodic noise barriers in rail transit[J]. Journal of Central South University (Science and Technology), 2019, 50(5): 1263-1270. (in Chinese)
    [12] GENG Q, WANG T, WU L, et al. Defect coupling behavior and flexural wave energy harvesting of phononic crystal beams with double defects in thermal environments[J]. Journal of Physics D:Applied Physics, 2021, 54(22): 225501. doi: 10.1088/1361-6463/abe1e7
    [13] CUI R X, ZHOU J S, GONG D. Band gap and vibration reduction properties of damped rail with two-dimensional honeycomb phononic crystals[J]. Shock and Vibration, 2021, 2021: 8814962.
    [14] HE F Y, QIAN D H, ZHAI M S. Wave propagation in a non-local piezoelectric phononic crystal Timoshenko nanobeam[J]. Modern Physics Letters B, 2021, 35(3): 2150064. doi: 10.1142/S0217984921500640
    [15] CHIN E B, MOKHTARI A A, SRIVASTAVA A, et al. Spectral extended finite element method for band structure calculations in phononic crystals[J]. Journal of Computational Physics, 2021, 427: 110066. doi: 10.1016/j.jcp.2020.110066
    [16] CHEN Z Y, WANG G F, ZHOU W J, et al. Elastic foundation induced wide bandgaps for actively-tuned topologically protected wave propagation in phononic crystal beams[J]. International Journal of Mechanical Sciences, 2021, 194: 106215. doi: 10.1016/j.ijmecsci.2020.106215
    [17] CANTANHÊDE H V, MIRANDA E J P JR, DOS SANTOS J M C. Elastic wave propagation in a bio-inspired phononic crystal[J]. Materials Science Forum, 2020, 1012: 9-13. doi: 10.4028/www.scientific.net/MSF.1012.9
    [18] 冯青松, 杨舟, 郭文杰, 等. 周期离散支承钢轨垂向振动带隙特性分析[J]. 中国科学: 技术科学, 2020, 50(12): 1563-1576. doi: 10.1360/SST-2019-0271

    FENG Q S, YANG Z, GUO W J, et al. Analysis of vertical vibration band gap characteristics of periodic discrete support rail[J]. Scientia Sinica Technologica, 2020, 50(12): 1563-1576. (in Chinese) doi: 10.1360/SST-2019-0271
    [19] 冯青松, 杨舟, 梁玉雄, 等. 长度调制的声子晶体梁弯曲振动带隙特性分析[J]. 噪声与振动控制, 2020, 40(4): 1-8.

    FENG Q S, YANG Z, LIANG Y X, et al. Analysis of the bending vibration band gap characteristics of a length-adjustable phononic crystal beam[J]. Noise and Vibration Control, 2020, 40(4): 1-8. (in Chinese)
    [20] 冯青松, 杨舟, 梁玉雄, 等. 双周期声子晶体梁弯曲振动带隙特性分析[J]. 噪声与振动控制, 2020, 40(3): 1-7 + 32.

    FENG Q S, YANG Z, LIANG Y X, et al. Study on bending vibration band gap characteristics of a double periodic phononic crystal beam[J]. Noise and Vibration Control, 2020, 40(3): 1-7 + 32. (in Chinese)
    [21] NORTON M P, KARCZUB D G. Fundamentals of noise and vibration analysis for engineers[M]. Cambridge: Cambridge University Press, 2003
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  63
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回