留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金疏水表面微坑阵列的掩膜电解加工仿真与分析

张宏伟 孟建兵 周海安 曲凌辉 董小娟 李丽 关庆义 王帅柯

张宏伟, 孟建兵, 周海安, 曲凌辉, 董小娟, 李丽, 关庆义, 王帅柯. 钛合金疏水表面微坑阵列的掩膜电解加工仿真与分析[J]. 机械科学与技术, 2023, 42(1): 106-112. doi: 10.13433/j.cnki.1003-8728.20200616
引用本文: 张宏伟, 孟建兵, 周海安, 曲凌辉, 董小娟, 李丽, 关庆义, 王帅柯. 钛合金疏水表面微坑阵列的掩膜电解加工仿真与分析[J]. 机械科学与技术, 2023, 42(1): 106-112. doi: 10.13433/j.cnki.1003-8728.20200616
ZHANG Hongwei, MENG Jianbing, ZHOU Haian, QU Linghui, DONG Xiaojuan, LI Li, GUAN Qingyi, WANG Shuaike. Simulation and Analysis on Micro Pit Array of Titanium Alloy with Hydrophobic Surface by Mask Electrochemical Micromachining[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 106-112. doi: 10.13433/j.cnki.1003-8728.20200616
Citation: ZHANG Hongwei, MENG Jianbing, ZHOU Haian, QU Linghui, DONG Xiaojuan, LI Li, GUAN Qingyi, WANG Shuaike. Simulation and Analysis on Micro Pit Array of Titanium Alloy with Hydrophobic Surface by Mask Electrochemical Micromachining[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 106-112. doi: 10.13433/j.cnki.1003-8728.20200616

钛合金疏水表面微坑阵列的掩膜电解加工仿真与分析

doi: 10.13433/j.cnki.1003-8728.20200616
基金项目: 

山东省自然科学基金项目 ZR2021ME159

山东省自然科学基金项目 ZR2021ME211

详细信息
    作者简介:

    张宏伟(1997-), 硕士研究生, 研究方向为多尺度表面织构仿真与制备, zhwsdut@126.com

    通讯作者:

    孟建兵, 副教授, 硕士生导师, jianbingmeng@sdut.edu.cn

  • 中图分类号: TG662

Simulation and Analysis on Micro Pit Array of Titanium Alloy with Hydrophobic Surface by Mask Electrochemical Micromachining

  • 摘要: 为改善钛合金疏水性能, 获得较高的接触角, 使用掩膜电解技术对钛合金进行了凹坑阵列表面微织构的加工。首先, 建立微坑阵列掩膜电解加工的数学模型并进行多物理场耦合仿真; 其次, 分析掩膜电解加工参数对微坑阵列的作用, 并借助润湿理论模型获得微坑阵列的固-液接触面积比; 最后, 以该面积比为因变量, 以电解质质量分数、电解电压和掩膜尺寸为自变量, 进行正交试验仿真和极差分析, 获得最佳工艺参数组合。与仿真预测值相比, 微坑阵列单元体直径、间距、深度、固-液接触面积比和表面接触角的测量值误差均小于8%, 从而表明该方法在未经低表面能材料修饰的情况下, 成功制备了接触角约为140°的微坑阵列。
  • 图  1  掩膜电解加工原理图

    图  2  掩膜电解加工几何模型

    图  3  电解质质量分数对微坑阵列形貌的影响

    图  4  电解电压对微坑阵列形貌的影响

    图  5  掩膜尺寸对微坑阵列形貌的影响

    图  6  掩膜电解加工实验流程

    图  7  掩膜电解加工实验平台

    图  8  掩膜电解加工微坑阵列的实测图

    图  9  掩膜电解加工微坑阵列的接触角测量图

    表  1  仿真模型的相关参数设定表

    基本参数 数值
    初始电导率/(S·m-1) 4.36/11.6/16.06
    电解液密度/(g·cm-3) 1.05/1.1/1.3
    常压比热容/[J·(kg·℃)-1] 4200
    电解液流量/(L·min-1) 1.7
    热传导系数/[W·(m·K)-1] 0.6
    动力黏度/(Pa·s) 1.01×10-3
    TC4密度/(g·cm-3) 4.5
    TC4摩尔质量/(g·mol-1) 46.6
    下载: 导出CSV

    表  2  工艺参数及水平表

    水平 电解质质量分数A/% 电解电压B/V 掩膜尺寸C/μm
    1 5 10 190 & 25
    2 15 15 200 & 70
    3 30 20 200 & 100
    下载: 导出CSV

    表  3  微坑阵列仿真接触面积比计算结果

    序号 A B C λ
    1 1 1 1 0.46
    2 1 2 2 0.47
    3 1 3 3 0.50
    4 2 1 2 0.42
    5 2 2 3 0.45
    6 2 3 1 0.44
    7 3 1 3 0.46
    8 3 2 1 0.42
    9 3 3 2 0.40
    下载: 导出CSV

    表  4  微坑阵列仿真与实测误差分析

    参数 仿真预测 实测 误差
    凹坑直径/μm 245 251.9 2.82%
    单元间距/μm 26 24.3 6.54%
    平均深度/μm 39.2 42.2 7.65%
    固-液接触面积比 0.36 0.347 3.61%
    接触角/(°) 150.7 140.25 6.93%
    下载: 导出CSV
  • [1] BOIDI G, TERTULIANO I S, PROFITO F J, et al. Effect of laser surface texturing on friction behaviour in elastohydrodynamically lubricated point contacts under different sliding-rolling conditions[J]. Tribology International, 2020, 149: 105613 doi: 10.1016/j.triboint.2019.02.021
    [2] SU B B, HUANG L R, HUANG W, et al. Observation on the deformation of dimpled surface in soft-EHL contacts[J]. Tribology International, 2018, 119: 521-530 doi: 10.1016/j.triboint.2017.11.029
    [3] ZHANG D Y, GAO F, WEI X, et al. Fabrication of textured composite surface and its tribological properties under starved lubrication and dry sliding conditions[J]. Surface and Coatings Technology, 2018, 350: 313-322 doi: 10.1016/j.surfcoat.2018.07.026
    [4] 施鹏程, 卢艳. 微通道纳米结构的润湿接触状态对滑移减阻影响的分子动力学研究[J]. 机械科学与技术, 2021, 40(2): 313-320 doi: 10.13433/j.cnki.1003-8728.20200055

    SHI P C, LU Y. Molecular dynamics study on influence of wetting contact state of microchannel nanostructures on sliding drag reduction[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 313-320 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200055
    [5] 刘家成, 陈二云, 杨爱玲, 等. 非光滑表面叶片气动及降噪特性的研究[J]. 热能动力工程, 2020, 35(12): 31-39 doi: 10.16146/j.cnki.rndlgc.2020.12.005

    LIU J C, CHEN E Y, YANG A L, et al. Study on noise reduction characteristics of blade with non-smooth surface[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(12): 31-39 (in Chinese) doi: 10.16146/j.cnki.rndlgc.2020.12.005
    [6] ZHANG S J, ZHOU Y P, ZHANG H J, et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J]. International Journal of Machine Tools and Manufacture, 2019, 142: 16-41 doi: 10.1016/j.ijmachtools.2019.04.009
    [7] JAIN A, BAJPAI V. Mechanical micro-texturing and characterization on Ti6Al4V for the improvement of surface properties[J]. Surface and Coatings Technology, 2019, 380: 125087 doi: 10.1016/j.surfcoat.2019.125087
    [8] LIU R, CHI Z D, CAO L, et al. Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment[J]. Applied Surface Science, 2020, 534, 147576 doi: 10.1016/j.apsusc.2020.147576
    [9] PRATAP T, PATRA K. Fabrication of micro-textured surfaces using ball-end micromilling for wettability enhancement of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2018, 262: 168-181 doi: 10.1016/j.jmatprotec.2018.06.035
    [10] ZHOU C L, WU X Y, LU Y J, et al. Fabrication of hydrophobic Ti3SiC2 surface with micro-grooved structures by wire electrical discharge machining[J]. Ceramics International, 2018, 44(15): 18227-18234 doi: 10.1016/j.ceramint.2018.07.032
    [11] PATEL D S, SINGH A, BALANI K, et al. Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V[J]. Surface and Coatings Technology, 2018, 349: 816-829 doi: 10.1016/j.surfcoat.2018.05.032
    [12] 刘亚军, 李皓, 李士鹏, 等. 钛合金/CFRP叠层构件螺旋铣孔界面切削热研究[J]. 机械科学与技术, 2019, 38(9): 1406-1413 doi: 10.13433/j.cnki.1003-8728.20190004

    LIU Y J, LI H, LI S P, et al. Investigation of cutting heat of interface in helical milling of titanium and carbon fiber reinforced plastic stack[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1406-1413 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190004
    [13] LIU Y F, SU J H, TAN C W, et al. Effect of laser texturing on mechanical strength and microstructural properties of hot-pressing joining of carbon fiber reinforced plastic to Ti6Al4V[J]. Journal of Manufacturing Processes, 2021, 65: 30-41 doi: 10.1016/j.jmapro.2021.03.021
    [14] CONRADI M, KOCIJAN A, KLOBĈAR D, et al. Tribological response of laser-textured Ti6Al4V alloy under dry conditions and lubricated with Hank's solution[J]. Tribology International, 2021, 160: 107049 doi: 10.1016/j.triboint.2021.107049
    [15] GUPTA M K, SONG Q H, LIU Z Q, et al. Machining characteristics based life cycle assessment in eco-benign turning of pure titanium alloy[J]. Journal of Cleaner Production, 2020, 251: 119598 doi: 10.1016/j.jclepro.2019.119598
    [16] WU M, LIU J W, HE J F, et al. Fabrication of surface microstructures by mask electrolyte jet machining[J]. International Journal of Machine Tools and Manufacture, 2020, 148: 103471 doi: 10.1016/j.ijmachtools.2019.103471
    [17] PAN Y Q, HOU Z B, QU N S. Improvement in accuracy of micro-dimple arrays prepared by micro-electrochemical machining with high-pressure hydrostatic electrolyte[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5): 1767-1777
    [18] 钱双庆. 表面织构电解加工技术的基础研究与应用[D]. 南京: 南京航空航天大学, 2011

    QIAN S Q. Fundamental research on electrochemical micromachining of surface texture and applicatons[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese)
    [19] ZHOU Z Q, FANG X L, ZENG Y B, et al. Generating micro grooves with a semicircular cross-section using wire electrochemical micromachining[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(11-12): 2929-2940 doi: 10.1007/s00170-020-05934-2
    [20] LUO J X, FANG X L, ZHU D. Jet electrochemical machining of multi-grooves by using tube electrodes in a row[J]. Journal of Materials Processing Technology, 2020, 283: 116705 doi: 10.1016/j.jmatprotec.2020.116705
    [21] KOYANO T, HOSOKAWA A, TAKAHASHI T, et al. One-process surface texturing of a large area by electrochemical machining with short voltage pulses[J]. CIRP Annals, 2019, 68(1): 181-184 doi: 10.1016/j.cirp.2019.04.100
    [22] ZHOU Z W, WU X Y, LEI J G, et al. Fabrication of microgrooves with secondary microstructures by electrical discharge machining using a functionally graded laminated electrode[J]. Journal of Micromechanics and Microengineering, 2021, 31(1): 015003 doi: 10.1088/1361-6439/abc96d
    [23] MING P M, ZHOU W H, ZHAO C H, et al. Development of a modified through-mask electrochemical micromachining for micropatterning nonplanar surface[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5-8): 2613-2623 doi: 10.1007/s00170-017-0541-5
    [24] CAI Y K, CHANG W L, LUO X C, et al. Superhydrophobic structures on 316L stainless steel surfaces machined by nanosecond pulsed laser[J]. Precision Engineering, 2018, 52: 266-275 doi: 10.1016/j.precisioneng.2018.01.004
    [25] WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59 doi: 10.1038/s41586-020-2331-8
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  172
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 刊出日期:  2023-01-25

目录

    /

    返回文章
    返回