留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合域对抗自适应的刀具磨损预测方法

董靖川 谭志兰 王太勇 武晓鑫

董靖川,谭志兰,王太勇, 等. 结合域对抗自适应的刀具磨损预测方法[J]. 机械科学与技术,2023,42(2):165-172 doi: 10.13433/j.cnki.1003-8728.20200614
引用本文: 董靖川,谭志兰,王太勇, 等. 结合域对抗自适应的刀具磨损预测方法[J]. 机械科学与技术,2023,42(2):165-172 doi: 10.13433/j.cnki.1003-8728.20200614
DONG Jingchuan, TAN Zhilan, WANG Taiyong, WU Xiaoxin. Prediction Method of Tool Wear Combined withDomain Adversarial Adaptation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 165-172. doi: 10.13433/j.cnki.1003-8728.20200614
Citation: DONG Jingchuan, TAN Zhilan, WANG Taiyong, WU Xiaoxin. Prediction Method of Tool Wear Combined withDomain Adversarial Adaptation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 165-172. doi: 10.13433/j.cnki.1003-8728.20200614

结合域对抗自适应的刀具磨损预测方法

doi: 10.13433/j.cnki.1003-8728.20200614
基金项目: 国家自然科学基金面上项目(51975402)
详细信息
    作者简介:

    董靖川(1983−),高级工程师,博士,研究方向为数控技术、测控技术,new_lightning@aliyun.com

  • 中图分类号: TP183

Prediction Method of Tool Wear Combined withDomain Adversarial Adaptation

  • 摘要: 数控加工中存在刀具几何误差及安装误差、刀具及工件材料性能的随机波动等因素,导致刀具之间的磨损过程与监测信号上存在较大差异的问题,使得刀具磨损值难以精确预测。为此,本文提出了一种结合域对抗自适应的多尺度分布式卷积长短时记忆网络模型(Multiscale time-distributed convolutional long short-term memory,MTDCLSTM)。将加工过程中采集到的多传感器信号作为模型输入,通过域分类器与预测器之间的对抗学习,提取出可有效表征刀具磨损且与域无关的多尺度时空特征,经预测器的非线性映射,实现对刀具磨损值的精确预测。实验结果表明,结合域对抗自适应的MTDCLSTM模型预测性能明显优于分布式卷积神经网络、长短时记忆网络、卷积神经网络与支持向量机模型。与基于迁移成分分析的支持向量回归模型相比,本文模型的均方根误差与平均绝对误差分别降低了59.8%和62.5%,决定系数提高了66.1%,可有效缩小刀具个体之间的差异,提高磨损值预测精度。
  • 图  1  结合域对抗自适应的MTDCLSTM模型结构

    图  2  分布式卷积神经网络结构

    图  3  刀具磨损实验平台

    图  4  3把刀具的振动监测信号Q-Q图

    图  5  3把刀具的磨损曲线

    图  6  不同尺度下模型的预测结果

    图  7  本文模型在6个实验任务上的预测结果

    表  1  实验加工参数

    加工参数数值
    主轴转速/(r·min−110400
    进给速度/(mm·min−11555
    径向切宽/mm0.125
    轴向切深/mm0.2
    下载: 导出CSV

    表  2  域对抗自适应对模型性能的影响

    模型尺度单尺度单尺度*双尺度双尺度*三尺度三尺度*四尺度四尺度*
    RMSE16.2613.4417.9611.9813.359.1612.2411.77
    MAE13.0410.3614.269.0410.396.979.638.97
    R20.760.830.710.880.840.930.880.89
    注:*为该模型使用了域对抗自适应。
    下载: 导出CSV

    表  3  本文所提出的模型与其他模型对比结果

    模型 RMSEMAER2
    TDCNN11.818.740.88
    LSTM16.1111.410.78
    CNN38.3431.50−0.41
    SVR23.3016.760.53
    TCA-SVR22.8018.600.56
    本文模型9.166.970.93
    下载: 导出CSV
  • [1] KONG D D, CHEN Y J, LI N. Gaussian process regression for tool wear prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 556-574 doi: 10.1016/j.ymssp.2017.11.021
    [2] 程灿, 李建勇, 徐文胜, 等. 基于支持向量机与粒子滤波的刀具磨损状态识别[J]. 振动与冲击, 2018, 37(17): 48-55 + 71

    CHENG C, LI J Y, XU W S, et al. Tools' wear state recognition based on support vector machine and particle filtering[J]. Journal of Vibration and Shock, 2018, 37(17): 48-55 + 71 (in Chinese)
    [3] 肖鹏飞, 张超勇, 罗敏, 等. 基于自适应动态无偏最小二乘支持向量机的刀具磨损预测建模[J]. 中国机械工程, 2018, 29(7): 842-849

    XIAO P F, ZHANG C Y, LUO M, et al. Modeling method for tool wear prediction based on ADNLSSVM[J]. China Mechanical Engineering, 2018, 29(7): 842-849 (in Chinese)
    [4] XU X W, WANG J W, MING W W, et al. In-process tap tool wear monitoring and prediction using a novel model based on deep learning[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(1-2): 453-466 doi: 10.1007/s00170-020-06354-y
    [5] CAI W L, ZHANG W J, HU X F, et al. A hybrid information model based on long short-term memory network for tool condition monitoring[J]. Journal of Intelligent Manufacturing, 2020, 31(6): 1497-1510 doi: 10.1007/s10845-019-01526-4
    [6] QIAO H H, WANG T Y, WANG P. A tool wear monitoring and prediction system based on multiscale deep learning models and fog computing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(7-8): 2367-2384 doi: 10.1007/s00170-020-05548-8
    [7] 董靖川, 徐明达, 王太勇, 等. 分布式卷积神经网络在刀具磨损量预测中的应用[J]. 机械科学与技术, 2020, 39(3): 329-335

    DONG J C, XU M D, WANG T Y, et al. Application of distributed convolutional neural network in wear prediction of tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 329-335 (in Chinese)
    [8] 陈仁祥, 吴志元, 胡小林, 等. 深度特征联合匹配的不同刀具间磨损状态识别[J]. 仪器仪表学报, 2020, 41(12): 138-145

    CHEN R X, WU Z Y, HU X L, et al. Wear state recognition for different tools based on the joint matching of depth characteristics[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 138-145 (in Chinese)
    [9] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210 doi: 10.1109/TNN.2010.2091281
    [10] 李广. 结合迁移学习的机床刀具磨损预测研究[D]. 成都: 电子科技大学, 2020

    LI G. Research on tool wear prediction of machine tool based on transfer learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese)
    [11] MAO W T, HE J L, ZUO M J. Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1594-1608 doi: 10.1109/TIM.2019.2917735
    [12] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030
    [13] 蔡伟立, 胡小锋, 刘梦湘. 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统, 2021, 27(6): 1541-1549

    CAI W L, HU X F, LIU M X. Prediction method of tool remaining useful life based on transfer learning[J]. Computer Integrated Manufacturing Systems, 2021, 27(6): 1541-1549 (in Chinese)
    [14] DE OLIVEIRA DA COSTA P R, AKÇAY A, ZHANG Y Q, et al. Remaining useful lifetime prediction via deep domain adaptation[J]. Reliability Engineering & System Safety, 2020, 195: 106682
    [15] RAGAB M, CHEN Z H, WU M, et al. Adversarial transfer learning for machine remaining useful life prediction[C]//2020 IEEE International Conference on Prognostics and Health Management (ICPHM). Detroit: IEEE, 2020: 1-7
    [16] The Prognostics and Health Management Society. 2010 PHM society conference data challenge[EB/OL]. (2010-05-18). https://www.phmsociety.org/competition/phm/10
    [17] 万鹏, 李迎光, 刘长青, 等. 基于域对抗门控网络的变工况刀具磨损精确预测方法[J]. 航空学报, 2021, 42(10): 318-331

    WAN P, LI Y G, LIU C Q, et al. Method for accurate prediction of tool wear under varying cutting conditions based on domain adversarial gating neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 318-331 (in Chinese)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  275
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-24
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回