留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声疲劳试样动态应变测量及应力检定方法

彭文杰 吴圣川 薛欢 彭周 刘冬

彭文杰,吴圣川,薛欢, 等. 超声疲劳试样动态应变测量及应力检定方法[J]. 机械科学与技术,2023,42(2):287-293 doi: 10.13433/j.cnki.1003-8728.20200606
引用本文: 彭文杰,吴圣川,薛欢, 等. 超声疲劳试样动态应变测量及应力检定方法[J]. 机械科学与技术,2023,42(2):287-293 doi: 10.13433/j.cnki.1003-8728.20200606
PENG Wenjie, WU Shengchuan, XUE Huan, PENG Zhou, LIU Dong. Measurement Approach of Dynamic Strain and Stress Calibration for Ultrasonic Fatigue Specimen[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 287-293. doi: 10.13433/j.cnki.1003-8728.20200606
Citation: PENG Wenjie, WU Shengchuan, XUE Huan, PENG Zhou, LIU Dong. Measurement Approach of Dynamic Strain and Stress Calibration for Ultrasonic Fatigue Specimen[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 287-293. doi: 10.13433/j.cnki.1003-8728.20200606

超声疲劳试样动态应变测量及应力检定方法

doi: 10.13433/j.cnki.1003-8728.20200606
基金项目: 国家自然科学基金大科学装置联合基金培育项目(U2032121)
详细信息
    作者简介:

    彭文杰(1982−),正高级工程师,博士,研究方向为金属材料力学性能测试等,popchai@163.com

  • 中图分类号: TG115

Measurement Approach of Dynamic Strain and Stress Calibration for Ultrasonic Fatigue Specimen

  • 摘要: 超声疲劳试验技术是实现超高周疲劳测试的有效手段。然而,目前超声疲劳测试缺少应力检定方法,难以保证测试结果的可靠性与准确性。本文首先给出了超声疲劳测试中不同形状试样的设计方法和应力分布理论公式;然后,利用高速动态应变仪和高速相机对不同形状超声疲劳试样的动态应变进行测量,并将测试值和理论值进行了对比分析,证明了超声疲劳试样应变测量的可行性与准确性。在此基础上,提出了基于应变测量结果的超声疲劳试验检定方法,利用测得的应变值对应力值进行校核或修约,有效保证了超声疲劳测试的可靠性和准确性。
  • 图  1  几种常见的超声疲劳试样

    图  2  基于有限元的狗骨形试样设计窗口程序界面

    图  3  基于有限元的超声疲劳试样设计流程

    图  4  板状试样和沙漏形试样之间的应力转换

    图  5  板状试样和沙漏形试样应力转换窗口程序

    图  6  利用激光位移传感器测量超声疲劳振动位移

    图  7  基于高速应变仪的超声疲劳试样应变采集

    图  8  U0=19.6 μm时高速应变系统采集到的应变

    图  9  FFT得到的3个不同位移幅值对应的应变频谱图

    图  10  基于DIC高速相机的沙漏形试样应变测量

    图  11  高速相机拍摄的试样中间部位

    图  12  基于DIC得到的沙漏形试样轴向应变历程

    图  13  FFT得到的DIC测量应变频谱图

    表  1  等截面圆柱试样应变幅测量值和理论值对比

    位移幅值测量值ε理论值ε0ε′/ε0
    14.7 μm3.536 × 10−43.572 × 10−498.99%
    19.6 μm4.726 × 10−44.762 × 10−499.24%
    24.5 μm5.879 × 10−45.953 × 10−498.76%
    下载: 导出CSV

    表  2  高速相机和高速应变仪测试方法优缺点对比

    优点缺点
    高速相机/非接触式 可以得到全场应变 价格较为昂贵
    适用于沙漏形等应力梯度较大的试样 测量10−4数量级的微小应变可能会产生较大误差
    高速应变系统/接触式 成本较低 对黏贴应变片的工艺要求较高
    更适用于10−4数量级的微小应变测量 适用于板状和较大直径的等截面圆柱形及狗骨形试样
    下载: 导出CSV
  • [1] PYTTE B, SCHWERDT D, BERGER C. Very high cycle fatigue-Is there a fatigue limit?[J]. International Journal of Fatigue, 2011, 33(1): 49-58 doi: 10.1016/j.ijfatigue.2010.05.009
    [2] STANZL-TSCHEGG S. Very high cycle fatigue measuring techniques[J]. International Journal of Fatigue, 2014, 60: 2-17 doi: 10.1016/j.ijfatigue.2012.11.016
    [3] MAYER H. Recent developments in ultrasonic fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(1): 3-29
    [4] LESPERANCE X, ILIE P, INCE A. Very high cycle fatigue characterization of additively manufactured AlSi10Mg and AlSi7Mg aluminium alloys based on ultrasonic fatigue testing[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(3): 876-884
    [5] DU L M, QIAN G A, ZHENG L, et al. Influence of processing parameters of selective laser melting on high-cycle and very -high-cycle fatigue behaviour of Ti-6Al-4V[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(1): 240-256
    [6] FURUYA Y, ABE T, MATSUOKA S. 1010-cycle fatigue properties of 1800 MPa-class JIS-SUP7 spring steel[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(7): 641-645
    [7] MURAKAMI Y, NOMOTO T, UEDA T, et al. On the mechanism of fatigue failure in the superlong life regime (N>107 cycles) Part I: influence of hydrogen trapped by inclusions[J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 23(11): 893-902
    [8] SONG Q Y, SUN C Q. Mechanism of crack initiation and early growth of high strength steels in very high cycle fatigue regime[J]. Materials Science and Engineering:A, 2020, 771: 138648 doi: 10.1016/j.msea.2019.138648
    [9] STANZL-TSCHEGG S E. Fracture mechanisms and fracture mechanics at ultrasonic frequencies[J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7): 567-579
    [10] BANDARA C S, SIRIWARDANE S C, DISSANAYAKE U I, et al. Fatigue failure predictions for steels in the very high cycle region- A review and recommendations[J]. Engineering Failure Analysis, 2014, 45: 421-435 doi: 10.1016/j.engfailanal.2014.07.015
    [11] ZHU M L, JIN L, XUAN F Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes[J]. Acta Materialia, 2018, 157: 259-275 doi: 10.1016/j.actamat.2018.07.036
    [12] ZHANG Y L, WANG J L, SUN Q C, et al. Fatigue life prediction of FV520B with internal inclusions[J]. Materials & Design, 2015, 69: 241-246
    [13] SUN K P, SUN Q C, ZHANG Y Z, et al. A pragmatic approach to predict fatigue strength concerning the short crack behavior in VHCF[J]. International Journal of Fatigue, 2020, 135: 105561 doi: 10.1016/j.ijfatigue.2020.105561
    [14] LIU Y B, LI Y D, LI S X, et al. Prediction of the S-N curves of high-strength steels in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2010, 32(8): 1351-1357 doi: 10.1016/j.ijfatigue.2010.02.006
    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 15248-2008 金属材料轴向等幅低循环疲劳试验方法[S]. 北京: 中国标准出版社, 2008

    General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. GB/T 15248-2008 The test method for axial loading constant-amplitude low-cycle fatigue of metallic materials[S]. Beijing: Standards Press of China, 2008 (in Chinese)
    [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 3075-2008 金属材料 疲劳试验 轴向力控制方法[S]. 北京: 中国标准出版社, 2009

    General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. GB/T 3075-2008 Metallic materials-fatigue testing-axial-force-controlled method[S]. Beijing: Standards Press of China, 2009 (in Chinese)
    [17] SUN C Q, SONG Q Y, HU Y P, et al. Effects of intermittent loading on fatigue life of a high strength steel in very high cycle fatigue regime[J]. International Journal of Fatigue, 2018, 117: 9-12 doi: 10.1016/j.ijfatigue.2018.07.033
    [18] 彭文杰, 顾明凯, 邝兰翔, 等. 超声疲劳试验振动位移及应力控制分析[J]. 武汉工程职业技术学院学报, 2016, 28(1): 8-10 + 45 doi: 10.3969/j.issn.1671-3524.2016.01.003

    PENG W J, GU M K, KUANG L X, et al. The control analysis of ultrasonic fatigue vibration displacement and stress[J]. Journal of Wuhan Engineering Institute, 2016, 28(1): 8-10 + 45 (in Chinese) doi: 10.3969/j.issn.1671-3524.2016.01.003
    [19] 彭文杰, 陈一鸣, 顾明凯, 等. 几种不同形状试样的超声疲劳试验方法[J]. 武汉工程职业技术学院学报, 2016, 28(2): 1-4 doi: 10.3969/j.issn.1671-3524.2016.02.001

    PENG W J, CHEN Y M, GU M K, et al. Ultrasonic fatigue test method of several specimens[J]. Journal of Wuhan Engineering Institute, 2016, 28(2): 1-4 (in Chinese) doi: 10.3969/j.issn.1671-3524.2016.02.001
    [20] 程礼, 焦胜博, 李全通, 等. 超高周疲劳与断裂[M]. 北京: 国防工业出版社, 2017

    CHENG L, JIAO S B, LI Q T, et al. Very high cycle fatigue and fracture[M]. Beijing: National Defense Industry Press, 2017 (in Chinese)
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  100
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回