留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四参数变弯度翼型的气动特性分析与优化设计

保女子 彭叶辉 冯和英 杨成浩

保女子,彭叶辉,冯和英, 等. 四参数变弯度翼型的气动特性分析与优化设计[J]. 机械科学与技术,2023,42(2):309-320 doi: 10.13433/j.cnki.1003-8728.20200605
引用本文: 保女子,彭叶辉,冯和英, 等. 四参数变弯度翼型的气动特性分析与优化设计[J]. 机械科学与技术,2023,42(2):309-320 doi: 10.13433/j.cnki.1003-8728.20200605
BAO Nyuzi, PENG Yehui, FENG Heying, YANG Chenghao. Aerodynamic Characteristic Analysis and Optimization Design of Four-parameter Variable Camber Airfoil[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 309-320. doi: 10.13433/j.cnki.1003-8728.20200605
Citation: BAO Nyuzi, PENG Yehui, FENG Heying, YANG Chenghao. Aerodynamic Characteristic Analysis and Optimization Design of Four-parameter Variable Camber Airfoil[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 309-320. doi: 10.13433/j.cnki.1003-8728.20200605

四参数变弯度翼型的气动特性分析与优化设计

doi: 10.13433/j.cnki.1003-8728.20200605
基金项目: 国家自然科学基金项目(51875194)与湖南省自然科学基金项目(2020JJ4306)
详细信息
    作者简介:

    保女子(1996−),硕士研究生,研究方向为计算数学, baonvzi0216@163.com

    通讯作者:

    彭叶辉,副教授,硕士生导师,pengyehui@hnust.edu.cn

  • 中图分类号: V211

Aerodynamic Characteristic Analysis and Optimization Design of Four-parameter Variable Camber Airfoil

  • 摘要: 针对NACA 0012翼型,在马赫数为0.176的来流条件下,首先利用数值模拟研究了翼型前缘下弯角度、前缘偏转位置、后缘下弯角度和后缘偏转位置等因素对翼型气动性能的影响规律;其次,以升阻比为目标,上述4个因素为设计变量,利用神经网络建立升阻比与4个设计变量间的预测模型;然后,充分考虑优化精度和神经网络训练数据库的计算量,构造了一种翼型优化过程与神经网络预测耦合的迭代优化策略,基于该优化策略得到最优变弯度翼型构型。对比优化翼型和原始翼型,升阻比提高约22%,较大程度改善了翼型的气动特性;并且通过远场噪声分析,发现优化翼型表现出了较好的声学性能,在1 000 Hz附近单音噪声最大可降低12 dB。
  • 图  1  翼型网格

    图  2  网格无关性验证

    图  3  翼型表面的压力系数分布对比

    图  4  翼型变弯度示意图

    图  5  翼型不同前缘下弯角度的气动性能

    图  6  翼型不同前缘偏转位置下的气动性能

    图  7  翼型不同后缘下弯角度的气动性能

    图  8  翼型不同后缘偏转位置下的气动性能

    图  9  神经网络逼近与优化耦合算法

    图  10  神经网络回归分析图

    图  11  翼型优化前后气动性能对比

    图  12  翼型表面压力云图

    图  13  翼型压力系数分布

    图  14  翼型优化前后声压级频谱对比

    图  15  翼型湍动能云图

    图  16  翼型速度脉动云图

    图  17  翼型涡量云图

    表  1  不同前缘下弯角度

    翼型前缘下弯角度翼型前缘下弯角度
    ${\theta _{LE} }{\text{-}}5^\circ$ ${\theta _{LE} }{\text{-}}15^\circ$ 15°
    ${\theta _{LE} }{\text{-}}10^\circ$ 10° ${\theta _{LE} }{\text{-}}20^\circ$ 20°
    下载: 导出CSV

    表  2  不同前缘偏转位置

    翼型前缘偏转位置
    ${H_{LE} } {\text{-}} 0.1c$ $ 0.1c $
    ${H_{LE} } {\text{-}} 0.2c$ $ 0.2c $
    ${H_{LE} } {\text{-}} 0.3c$ $ 0.3c $
    ${H_{LE} } {\text{-}} 0.4c$ $ 0.4c $
    下载: 导出CSV

    表  3  不同后缘下弯角度

    翼型后缘下弯角度
    $ {\theta _{TE}} {\text{-}} 5^\circ $
    $ {\theta _{TE}}{\text{-}} 10^\circ $10°
    $ {\theta _{TE}} {\text{-}} 15^\circ $15°
    $ {\theta _{TE}} {\text{-}}20^\circ $20°
    下载: 导出CSV

    表  4  不同后缘偏转位置

    翼型后缘偏转位置
    $ {H_{TE}} {\text{-}} 0.6c $ 0.6c
    $ {H_{TE}} {\text{-}} 0.7c $ 0.7c
    $ {H_{TE}} {\text{-}} 0.8c $ 0.8c
    $ {H_{TE}} {\text{-}} 0.9c $ 0.9c
    下载: 导出CSV

    表  5  优化结果

    设计变量优化结果
    前缘偏转位置0.38c
    后缘偏转位置0.9c
    前缘下弯角度8.11°
    后缘下弯角度7.21°
    下载: 导出CSV

    表  6  优化前后气动特性对比

    气动性能原始翼型优化翼型增长率/%
    $ {C_L} $0.999241.1234712.423
    $ {C_D} $0.020870.01923−7.86
    $ K $47.879358.422722
    下载: 导出CSV
  • [1] 何萌, 杨体浩, 白俊强, 等. 基于后缘襟翼偏转的大型客机变弯度技术减阻收益[J]. 航空学报, 2020, 41(7): 123462

    HE M, YANG T H, BAI J Q, et al. Drag reduction benefits of variable camber technology of airliner based on trailing-edge flap deflection[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 123462 (in Chinese)
    [2] LEBOFSKY S, TING E, NGUYEN N. Aeroelastic modeling and drag optimization of flexible wing aircraft with variable camber continuous trailing edge flap[C]//32nd AIAA Applied Aerodynamics Conference. Atlanta: American Institute of Aeronautics and Astronautics, 2014
    [3] URNES J M, MORRIS C, SHEAHAN J, et al. Control system design for a variable camber continuous trailing edge flap system on an elastic wing[C]//55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Maryland: American Institute of Aeronautics and Astronautics, 2014
    [4] URNES J, NGUYEN N, IPPOLITO C, et al. A mission adaptive variable camber flap control system to optimize high lift and cruise lift to drag ratios of future N + 3 transport aircraft[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, Texas: American Institute of Aeronautics and Astronautics, 2013
    [5] 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443

    BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese)
    [6] 杨文超,杨剑挺,王进,等.变弯度机翼准定常流动分离特性的实验研究[J].中国科学:物理学 力学 天文学,2012,42(5):531-537.

    Yang W C, Yang J T, Wang J, et al. Experimental investigation on the quasi-steady flow separation behaviors of a variable camber wing[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2012, 42: 531–537 (in Chinese)
    [7] LEE D S, GONZALEZ L F, PERIAUX J, et al. Robust aerodynamic design optimisation of morphing aerofoil/wing using distributed MOGA[C]//Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences. Brisbane: The International Council of the Aeronautical Sciences, 2012
    [8] MOLINARI G, QUACK M, ARRIETA A F, et al. Design, realization and structural testing of a compliant adaptable wing[J]. Smart Materials and Structures, 2015, 24(10): 105027 doi: 10.1088/0964-1726/24/10/105027
    [9] MOLINARI G, QUACK M, DMITRIEV V, et al. Aero-structural optimization of morphing airfoils for adaptive wings[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 1075-1089 doi: 10.1177/1045389X11414089
    [10] KAUL U K, NGUYEN N T. Drag optimization study of variable camber continuous trailing edge flap (VCCTEF) using overflow[C]//32nd AIAA Applied Aerodynamics Conference. Atlanta: American Institute of Aeronautics and Astronautics, 2014
    [11] BURDETTE D A, KENWAY G K W, MARTINS J R R A. Aerostructural design optimization of a continuous morphing trailing edge aircraft for improved mission performance[C]//17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Washington: American Institute of Aeronautics and Astronautics, 2016
    [12] BURDETTE JR D A. High-fidelity aerostructural design optimization of transport aircraft with continuous morphing trailing edge technology[D]. Ann Arbor: University of Michigan, 2017
    [13] YOKOZEKI T, SUGIURA A, HIRANO Y. Development and wind tunnel test of variable camber morphing wing[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. National Harbor, Maryland: American Institute of Aeronautics and Astronautics, 2014
    [14] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1): 46-53 doi: 10.3969/j.issn.0258-1825.2010.01.007

    CHEN Q, BAI P, YIN W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1): 46-53 (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.01.007
    [15] 陆维爽, 刘沛清, 郭昊. 前缘下垂远场低频宽频噪声特性[J]. 航空学报, 2019, 40(10): 123152

    LU W S, LIU P Q, GUO H. Characteristics of low frequency broadband noise for leading-edge droop nose measured in a far-field[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 123152 (in Chinese)
    [16] 杨小权, 孙一峰, 杨士普, 等. 前缘下垂增升装置气动特性和噪声特性研究[C]//第九届全国流体力学学术会议论文摘要集. 南京: 中国力学学会, 2016: 434-435

    YANG X Q, SUN Y F, YANG S P, et al. Research on the aerodynamic and noise characteristics of the leading-edge droop-increasing device[C]//Proceedings of the Ninth National Conference on Fluid Mechanics. Nanjing: Chinese Society of Theoretical and Applied Mechanics, 2016: 434-435 (in Chinese)
    [17] 王斌, 郝璇, 郭少杰, 等. 宽体客机巡航机翼变弯度减阻技术[J]. 空气动力学学报, 2019, 37(6): 974-982 doi: 10.7638/kqdlxxb-2017.0215

    WANG B, HAO X, GUO S J, et al. Cruise drag reduction of variable camber wing of wide-body civil transport[J]. Acta Aerodynamica Sinica, 2019, 37(6): 974-982 (in Chinese) doi: 10.7638/kqdlxxb-2017.0215
    [18] FINCHAM J H S, FRISWELL M I. Aerodynamic optimisation of a camber morphing aerofoil[J]. Aerospace Science and Technology, 2015, 43: 245-255 doi: 10.1016/j.ast.2015.02.023
    [19] 田晓虎, 张彬乾, 沈冬. 引入最优顶点的混合方法及其在翼型优化设计中的应用[J]. 机械科学与技术, 2012, 31(12): 2010-2013 doi: 10.13433/j.cnki.1003-8728.2012.12.016

    TIAN X H, ZHANG B Q, SHEN D. Hybrid optimization method based on the best vertex and its application to optimization design of airfoil[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(12): 2010-2013 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2012.12.016
    [20] 辛尊, 丁运亮. 高速民用运输机机翼的多学科设计优化[J]. 机械科学与技术, 2012, 31(1): 79-82 doi: 10.13433/j.cnki.1003-8728.2012.01.032

    XIN Z, DING Y L. Multi-disciplinary design optimization of a high-speed civil transporter wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(1): 79-82 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2012.01.032
    [21] 王清, 招启军. 基于遗传算法的旋翼翼型综合气动优化设计[J]. 航空动力学报, 2016, 31(6): 1486-1945 doi: 10.13224/j.cnki.jasp.2016.06.026

    WANG Q, ZHAO Q J. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power, 2016, 31(6): 1486-1945 (in Chinese) doi: 10.13224/j.cnki.jasp.2016.06.026
    [22] 何磊, 钱炜祺, 刘滔, 等. 基于深度学习的翼型反设计方法[J]. 航空动力学报, 2020, 35(9): 1909-1917 doi: 10.13224/j.cnki.jasp.2020.09.013

    HE L, QIAN W Q, LIU T, et al. Inverse design method of airfoil based on deep learning[J]. Journal of Aerospace Power, 2020, 35(9): 1909-1917 (in Chinese) doi: 10.13224/j.cnki.jasp.2020.09.013
    [23] FATAHIAN E, NICHKOOHI A L, SALARIAN H, et al. Effects of the hinge position and suction on flow separation and aerodynamic performance of the NACA 0012 airfoil[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(2): 86 doi: 10.1007/s40430-020-2170-4
    [24] 陈懋章. 粘性流体动力学基础[M]. 北京: 高等教育出版社, 2002

    CHEN M Z. Fundamentals of viscous fluid dynamics[M]. Beijing: Higher Education Press, 2002 (in Chinese)
    [25] 马娜, 袁启龙, 周新涛, 等. 风力发电机叶片气动特性数值模拟[J]. 机械科学与技术, 2014, 33(10): 1473-1478 doi: 10.13433/j.cnki.1003-8728.2014.1007

    MA N, YUAN Q L, ZHOU X T, et al. Numerical simulation of aerodynamic performance for wind turbine blade[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(10): 1473-1478 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2014.1007
    [26] LADSON C L, HILL A S, JOHNSON JR W G. Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel[R]. Hampton, VA: National Aeronautics and Space Administration, Langley Research Center, 1987
    [27] 刘加伟, 柳兆涛, 丁仕洪, 等. 等离子体热效应对NACA0012翼型增升减阻的研究[J]. 推进技术, 2020, 41(5): 1055-1062 doi: 10.13675/j.cnki.tjjs.190574

    LIU J W, LIU Z T, DING S H, et al. Study on lift enhancement and drag reduction of naca0012 airfoil under plasma thermal effect[J]. Journal of Propulsion Technology, 2020, 41(5): 1055-1062 (in Chinese) doi: 10.13675/j.cnki.tjjs.190574
    [28] SCHATZMAN N L. Aerodynamics and aeroacoustic sources of a coaxial rotor[R]. 2018
    [29] 陆维爽, 田云, 刘沛清, 等. GAW-1翼型前后缘变弯度气动性能研究[J]. 航空学报, 2016, 37(2): 437-450

    LU W S, TIAN Y, LIU P Q, et al. Aerodynamic performance of gaw-1 airfoil leading-edge and trailing-edge variable camber[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 437-450 (in Chinese)
    [30] 高超, 贾娅娅, 刘庆宽. 相对厚度对翼型气动特性的影响研究[J]. 工程力学, 2020, 37(S1): 380-386 doi: 10.6052/j.issn.1000-4750.2019.04.S062

    GAO C, JIA Y Y, LIU Q K. Effect of relative thickness on aerodynamic performance of airfoil[J]. Engineering Mechanics, 2020, 37(S1): 380-386 (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S062
    [31] 孙召成, 李增亮, 徐朝政, 等. 潮流能水轮机翼型升阻比与空化性能优化研究[J]. 太阳能学报, 2019, 40(12): 3331-3338

    SUN Z C, LI Z L, XU C Z, et al. Optimization of lift-drag ratio and cavitation performance for marine current turbine[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3331-3338 (in Chinese)
    [32] 孙召成, 李增亮, 徐朝政, 等. 基于B样条与遗传算法的翼型优化实验研究[J]. 工程热物理学报, 2019, 40(12): 2806-2814

    SUN Z C, LI Z L, XU C Z, et al. Airfoil optimization and experimental research based on the b spline and genetic algorithm[J]. Journal of Engineering Thermophysics, 2019, 40(12): 2806-2814 (in Chinese)
    [33] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 1989, 2(4): 303-314 doi: 10.1007/BF02551274
    [34] ZHAO A M, HUI Z, JIN H C, et al. Analysis on the aerodynamic characteristics of a continuous whole variable camber airfoil[J]. Journal of Physics: Conference Series, 2019, 1215(1): 012005 doi: 10.1088/1742-6596/1215/1/012005
    [35] 王秉良, 鲁嘉华, 匡江红, 等. 飞机空气动力学[M]. 北京: 清华大学出版社, 2013

    WANG B L, LU J H, KUANG J H, et al. Aircraft aerodynamics[M]. Beijing: Tsinghua University Press, 2013 (in Chinese)
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  181
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回