留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器X型整体壁板加工变形控制技术研究

刘相柱 陈沛 刘晓 张游

刘相柱,陈沛,刘晓, 等. 航天器X型整体壁板加工变形控制技术研究[J]. 机械科学与技术,2023,42(2):223-230 doi: 10.13433/j.cnki.1003-8728.20200602
引用本文: 刘相柱,陈沛,刘晓, 等. 航天器X型整体壁板加工变形控制技术研究[J]. 机械科学与技术,2023,42(2):223-230 doi: 10.13433/j.cnki.1003-8728.20200602
LIU Xiangzhu, CHEN Pei, LIU Xiao, ZHANG You. Study on Deformation Control Technology of X-shape Integral Panel for Spacecraft[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 223-230. doi: 10.13433/j.cnki.1003-8728.20200602
Citation: LIU Xiangzhu, CHEN Pei, LIU Xiao, ZHANG You. Study on Deformation Control Technology of X-shape Integral Panel for Spacecraft[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 223-230. doi: 10.13433/j.cnki.1003-8728.20200602

航天器X型整体壁板加工变形控制技术研究

doi: 10.13433/j.cnki.1003-8728.20200602
基金项目: 上海市2021年度“科技创新行动计划”优秀学术/技术带头人计划项目(21XD1431700)
详细信息
    作者简介:

    刘相柱(1988−),工程师,硕士,研究方向为航天大型舱体数控加工技术,liuxiangzhuqd@163.com

  • 中图分类号: TH164

Study on Deformation Control Technology of X-shape Integral Panel for Spacecraft

  • 摘要: 针对航天器X型整体壁板在铣削过程中产生加工变形导致结构尺寸超差的问题,提出一种利用有限元仿真预估零件加工变形程度的方法来优化加工工艺方案。对壁板加工过程中的受力状态进行研究,给出了一种利用铣削轨迹获取各个方向铣削力的方法,并利用铣削力有限元仿真来预估整体壁板的加工变形程度。同时,根据优化后的工艺方案设计了分腔式真空吸附工艺装备。通过实例加工验证了该方法控制铣削变形的有效性。
  • 图  1  X型壁板结构图

    图  2  受力分析图

    图  3  不同铣削深度下各个铣削力数值

    图  4  铣削初段铣削力数值

    图  5  边界条件设定示意图

    图  6  变形程度示意图

    图  7  真空吸附工装结构图

    图  8  X型整体壁板装夹结构图

    图  9  X型整体壁板实物

    图  10  某型航天器实物

    表  1  不同铣削深度下铣削力仿真值

    ap/mm铣削力仿真值铣削力比值
    FFxFyFzFx/F)/仿真值(Fy/F)/仿真值(Fz/F)/仿真值
    141153122(0.30 ~ 0.40)/0.365(0.85 ~ 0.95)/0.756(0.50 ~ 0.55)/0.537
    520570165110(0.30 ~ 0.40)/0.341(0.85 ~ 0.95)/0.805(0.50 ~ 0.55)/0.537
    10390110320190(0.30 ~ 0.40)/0.282(0.85 ~ 0.95)/0.821(0.50 ~ 0.55)/0.537
    注:铣削条件n=8 000 r/min; f=6 000 mm/min; ae=1 mm;Fx/FFy/FFz/F均为顺铣经验比值。
    下载: 导出CSV
  • [1] 赵长喜, 李继霞. 航天器整体壁板结构制造技术[J]. 航天制造技术, 2006, 8(4): 44-48

    ZHAO C X, LI J X. The manufacturing technology of integral panel on spacecraft[J]. Aerospace Manufacturing Technology, 2006, 8(4): 44-48 (in Chinese)
    [2] 孙杰. 航空整体结构件数控加工变形校正理论和方法研究[D]. 杭州: 浙江大学, 2004

    SUN J. Study on correction theory and method for distorted aeronautical monolithic component due to NC machining[D]. Hangzhou: Zhejiang University, 2003 (in Chinese)
    [3] 成群林, 柯映林, 董辉跃, 等. 航空整体结构件铣削加工变形预测研究[J]. 浙江大学学报(工学版), 2007, 41(5): 799-803 doi: 10.3785/j.issn.1008-973X.2007.05.020

    CHENG Q L, KE Y L, DONG H Y, et al. Distortion prediction for milling process of aerospace monolithic components[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(5): 799-803 (in Chinese) doi: 10.3785/j.issn.1008-973X.2007.05.020
    [4] 张洪伟, 张以都, 赵晓慈, 等. 航空结构件加工变形仿真关键技术[J]. 北京航空航天大学学报, 2008, 34(2): 239-243 + 248 doi: 10.13700/j.bh.1001-5965.2008.02.006

    ZHANG H W, ZHANG Y D, ZHAO X C, et al. Key techniques in simulation of machining distortion for aeronautical monolithic component[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(2): 239-243 + 248 (in Chinese) doi: 10.13700/j.bh.1001-5965.2008.02.006
    [5] 吴泽刚, 刘良宝, 孙剑飞, 等. 航空发动机TC4机匣加工变形控制研究[J]. 航空制造技术, 2017, 60(21): 62-67 + 72 doi: 10.16080/j.issn1671-833x.2017.21.062

    WU Z G, LIU L B, SUN J F, et al. Study on controlling machining distortion of aeroengine TC4 casing[J]. Aeronautical Manufacturing Technology, 2017, 60(21): 62-67 + 72 (in Chinese) doi: 10.16080/j.issn1671-833x.2017.21.062
    [6] 丁悦, 刘畅. 航空结构件铣削加工变形仿真技术研究与应用[J]. 航空制造技术, 2019, 62(3): 81-89 doi: 10.16080/j.issn1671-833x.2019.03.081

    DING Y, LIU C. Research and application of machining deformation simulation on aero-component[J]. Aeronautical Manufacturing Technology, 2019, 62(3): 81-89 (in Chinese) doi: 10.16080/j.issn1671-833x.2019.03.081
    [7] 毕运波, 柯映林, 董辉跃. 航空铝合金薄壁件加工变形有限元仿真与分析[J]. 浙江大学学报(工学版), 2008, 42(3): 397-402 doi: 10.3785/j.issn.1008-973X.2008.03.007

    BI Y B, KE Y L, DONG H Y. Finite element simulation and analysis of deformation in machining of aeronautical aluminum alloy thin-walled workpiece[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(3): 397-402 (in Chinese) doi: 10.3785/j.issn.1008-973X.2008.03.007
    [8] TSAI J S, LIAO C L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces[J]. Journal of Materials Processing Technology, 1999, 94(2-3): 235-246 doi: 10.1016/S0924-0136(99)00109-0
    [9] 王华敏, 秦国华, 胡政, 等. 面向加工变形控制的航空整体结构件拓扑优化设计方法[J]. 机械工程学报, 2019, 55(21): 127-138

    WANG H M, QIN G H, HU Z, et al. A structural topology optimal design approach to machining deformation control for aeronautical monolithic components[J]. Journal of Mechanical Engineering, 2019, 55(21): 127-138 (in Chinese)
    [10] 李曦, 袁军堂, 汪振华, 等. 基于Rayleigh-Ritz法的钛合金薄壁件非均匀余量加工变形控制研究[J]. 中国机械工程, 2020, 31(11): 1378-1385 doi: 10.3969/j.issn.1004-132X.2020.11.015

    LI X, YUAN J T, WANG Z H, et al. Study on deformation control of thin-walled titanium alloy parts in non-uniform allowance machining based on Rayleigh-Ritz method[J]. China Mechanical Engineering, 2020, 31(11): 1378-1385 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.11.015
    [11] 刘醒彦, 刘长青. 基于自然进化策略的多工艺融合结构件加工变形控制方法[J]. 航空制造技术, 2020, 63(11): 83-87 + 93 doi: 10.16080/j.issn1671-833x.2020.11.083

    LIU X Y, LIU C Q. Machining deformation control method of structural parts by multi-process fusion based on natural evolution strategy[J]. Aeronautical Manufacturing Technology, 2020, 63(11): 83-87 + 93 (in Chinese) doi: 10.16080/j.issn1671-833x.2020.11.083
    [12] 赵凯, 刘战强. 铣削力预测方法和影响因素综述[J]. 机械科学与技术, 2015, 34(8): 1190-1200 doi: 10.13433/j.cnki.1003-8728.2015.0810

    ZHAO K, LIU Z Q. An overview on milling force prediction methods and influencing factors[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(8): 1190-1200 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0810
    [13] 戚厚军, 吕利辉, 张大卫, 等. 摆线轮结构件高速铣削过程中铣削力的有限元仿真分析[J]. 机械科学与技术, 2010, 29(1): 17-23 doi: 10.13433/j.cnki.1003-8728.2010.01.003

    QI H J, LYU L H, ZHANG D W, et al. Finite element simulation of milling force for component with cycloid gear profile during high speed milling process[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(1): 17-23 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2010.01.003
    [14] 武凯, 何宁, 廖文和, 等. 薄壁腹板加工变形规律及其变形控制方案的研究[J]. 中国机械工程, 2004, 15(8): 670-674 doi: 10.3321/j.issn:1004-132X.2004.08.004

    WU K, HE N, LIAO W H, et al. Study on machining deformations and their control approaches of the thin-web in end milling[J]. China Mechanical Engineering, 2004, 15(8): 670-674 (in Chinese) doi: 10.3321/j.issn:1004-132X.2004.08.004
    [15] RATCHEV S, LIU S, HUANG W, et al. A flexible force model for end milling of low-rigidity parts[J]. Journal of Materials Processing Technology, 2004, 153-154: 134-138 doi: 10.1016/j.jmatprotec.2004.04.300
    [16] RATCHEV S, LIU S, BEEKER A A. Error compensation strategy in milling flexible thin-wall parts[J]. Journal of Materials Processing Technology, 2005, 162-163: 673-681 doi: 10.1016/j.jmatprotec.2005.02.192
    [17] 路冬. 航空整体结构件加工变形预测及装夹布局优化[D]. 济南: 山东大学, 2007

    LU D. Deformation prediction and fixture layout optimization of aerospace monolithic components[D]. Ji’nan: Shandong University, 2007 (in Chinese)
    [18] 夏亮亮, 袁军堂, 汪振华, 等. 基于DEFORM-3D的铝合金铣削力仿真与试验研究[J]. 机械设计与制造, 2013(4): 85-87 doi: 10.3969/j.issn.1001-3997.2013.04.027

    XIA L L, YUAN J T, WANG Z H, et al. Simulation and test research of milling force based on software Deform-3D[J]. Machinery Design & Manufacture, 2013(4): 85-87 (in Chinese) doi: 10.3969/j.issn.1001-3997.2013.04.027
    [19] 王先逵. 机械加工工艺手册[M]. 2版. 北京: 机械工业出版社, 2007

    WANG X K. Mechanical processing handbook[M]. 2nd ed. Beijing: China Machine Press, 2007 (in Chinese)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  135
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回