留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义边界下含双相流水平井钻柱频率特性分析

韩笃政 宋震 范谨铭

韩笃政,宋震,范谨铭. 广义边界下含双相流水平井钻柱频率特性分析[J]. 机械科学与技术,2023,42(3):358-366 doi: 10.13433/j.cnki.1003-8728.20200594
引用本文: 韩笃政,宋震,范谨铭. 广义边界下含双相流水平井钻柱频率特性分析[J]. 机械科学与技术,2023,42(3):358-366 doi: 10.13433/j.cnki.1003-8728.20200594
HAN Duzheng, SONG Zhen, FAN Jinming. Analysis of Frequency Characteristics of Horizontal Well Drill String with Two-phase Flow Under Generalized Boundary Conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 358-366. doi: 10.13433/j.cnki.1003-8728.20200594
Citation: HAN Duzheng, SONG Zhen, FAN Jinming. Analysis of Frequency Characteristics of Horizontal Well Drill String with Two-phase Flow Under Generalized Boundary Conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 358-366. doi: 10.13433/j.cnki.1003-8728.20200594

广义边界下含双相流水平井钻柱频率特性分析

doi: 10.13433/j.cnki.1003-8728.20200594
详细信息
    作者简介:

    韩笃政(1996−),硕士研究生,研究方向为油气装备结构振动与控制,handuzheng@qq.com

    通讯作者:

    宋震,副研究员,博士,zhen.song@rwth-aachen.de

  • 中图分类号: O32

Analysis of Frequency Characteristics of Horizontal Well Drill String with Two-phase Flow Under Generalized Boundary Conditions

  • 摘要: 钻柱在内流作用和旋转因素的影响下容易产生耦合振动,发生疲劳失效。本文基于微分求积法(DQM)对含双相流水平井钻柱耦合动力学特性进行了研究。利用扩展的Hamilton变分原理建立了计入内流、轴向压力及旋转等因素影响的水平井钻柱动力学方程。在振动问题中考虑了广义边界条件,通过改变边界等效弹簧刚度将模型简化为简支、悬臂等简单边界条件模型进行研究。通过分析旋转角速度、轴向压力、液相流速、气体体积分数等因素对模型频率特性的影响,得到了无量纲固有频率随不同参数变化的特征曲线。分析结果表明:不同边界条件下模型的频率特性曲线有很大的差别;气体体积分数对临界流速的影响在悬臂管系统中表现的更为明显;在简支管模型中,随着轴力的增大会产生模态耦合颤振。此外,通过液相流速和旋转角速度的频率云图展示了两种因素对钻柱频率特性的影响。
  • 图  1  动力学模型示意图

    图  2  悬臂边界下系统无量纲特征频率

    图  3  旋转角速度对系统特征频率的影响

    图  4  轴向压力对系统特征频率的影响

    图  5  简支边界下气体体积分数对特征频率的影响

    图  6  悬臂边界下气体体积分数对特征频率的影响

    图  7  液相流速和转速对系统特征频率的影响

    表  1  模型参数表

    参数数值
    弹性模量E 2 × 1011 N/m2
    钻柱长度L 10 m
    钻柱外径D 0.26 m
    钻柱内径d 0.22 m
    钻柱质量密度ρp 7850 kg/m3
    内流气相质量密度ρg 1.2 kg/m3
    内流液相质量密度ρl 1000 kg/m3
    下载: 导出CSV

    表  2  系统在xy方向的前两阶无量纲固有频率

    Ω*理论1阶2阶
    xyxy
    0本文3.5163.51622.03322.033
    文献[18]3.5163.51622.03422.034
    2本文1.5165.51620.03324.033
    文献[18]1.5165.51620.03424.034
    3.5本文0.0157.01518.53325.533
    文献[18]07.01618.53425.534
    4本文7.51618.03326.033
    文献[18]7.51618.03426.034
    下载: 导出CSV

    表  3  不同边界条件下系统前两阶特征频率

    边界1阶2阶
    xyxy
    CC实部0.000.000.000.00
    虚部−20.92−22.63−59.94−61.65
    SS实部0.000.000.000.00
    虚部−9.65−7.94−37.60−39.31
    FF实部−0.36−0.340.340.37
    虚部−0.84−0.87−0.85−0.86
    CS实部0.000.000.000.00
    虚部−15.48−13.78−48.20−49.91
    CF实部−0.60−0.97−0.71−0.77
    虚部−2.82−4.52−20.57−22.28
    SF实部0.30−1.48−0.70−0.79
    虚部−0.29−1.45−13.80−15.52
    下载: 导出CSV
  • [1] 黄本生, 刘清友. 水平井钻柱动力学研究进展[J]. 特种油气藏, 2009, 16(3): 1-6.

    HUANG B S, LIU Q Y. Research progress of drill string dynamics of horizontal well[J]. Special Oil & Gas Reservoirs, 2009, 16(3): 1-6. (in Chinese)
    [2] 王宝金, 任福深, 朱安贺. 钻井液作用下水平井钻柱横向振动建模与分析[J]. 机械科学与技术, 2018, 37(11): 1670-1677. doi: 10.13433/j.cnki.1003-8728.20180077

    WANG B J, REN F S, ZHU A H. Modeling and analysis of lateral vibration for horizontal drillstring under action of drilling mud[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11): 1670-1677. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180077
    [3] GHASEMLOONIA A, RIDEOUT D G, BUTT S D. Coupled transverse vibration modeling of drillstrings subjected to torque and spatially varying axial load[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2013, 227(5): 946-960. doi: 10.1177/0954406212455126
    [4] ARJUN P, TEODORIU C. Model development of torsional drillstring and investigating parametrically the stick-Slips influencing factors[J]. Journal of Energy Resources Technology, 2013, 135(1): 013103. doi: 10.1115/1.4007915
    [5] LIANG F, YANG X D, QIAN Y J, et al. Transverse free vibration and stability analysis of spinning pipes conveying fluid[J]. International Journal of Mechanical Sciences, 2018, 137: 195-204. doi: 10.1016/j.ijmecsci.2018.01.015
    [6] LIANG F, YANG X D, ZHANG W, et al. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment[J]. Journal of Sound and Vibration, 2018, 417: 65-79. doi: 10.1016/j.jsv.2017.12.005
    [7] LIANG F, YANG X D, ZHANG W, et al. Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows[J]. Journal of Fluids and Structures, 2019, 87: 247-262. doi: 10.1016/j.jfluidstructs.2019.04.002
    [8] LIANG F, GAO A, YANG X D. Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans[J]. Applied Mathematical Modelling, 2020, 83: 454-469. doi: 10.1016/j.apm.2020.03.011
    [9] CHANG X P, LI X, YANG L, et al. Vibration characteristics of the stepped drill string subjected to gas-structure interaction and spinning motion[J]. Journal of Sound and Vibration, 2019, 450: 251-275. doi: 10.1016/j.jsv.2019.02.003
    [10] LI F Q, AN C, DUAN M L, et al. Combined damping model for dynamics and stability of a pipe conveying two-phase flow[J]. Ocean Engineering, 2020, 195: 106683. doi: 10.1016/j.oceaneng.2019.106683
    [11] EBRAHIMI-MAMAGHANI A, SOTUDEH-GHAREBAGH R, ZARGHAMI R, et al. Dynamics of two-phase flow in vertical pipes[J]. Journal of Fluids and Structures, 2019, 87: 150-173. doi: 10.1016/j.jfluidstructs.2019.03.010
    [12] 胡以宝, 狄勤丰, 王文昌, 等. 斜直井眼中转速对钻柱动力学特性的影响[J]. 工程力学, 2010, 27(5): 184-190.

    HU Y B, DI Q F, WANG W C, et al. Influence of rotary table speed on the dynamic characteristics of drillsting in inclined straight hole[J]. Engineering Mechanics, 2010, 27(5): 184-190. (in Chinese)
    [13] 梁峰, 金基铎, 杨晓东, 等. 双参数地基上输流管道的稳定性分析[J]. 中国机械工程, 2010, 21(2): 179-183.

    LIANG F, JIN J D, YANG X D, et al. Stability of fluid-conveying pipes lying on two-parameter foundation[J]. China Mechanical Engineering, 2010, 21(2): 179-183. (in Chinese)
    [14] WANG L, DAI H L, NI Q. Nonconservative pipes conveying fluid: evolution of mode shapes with increasing flow velocity[J]. Journal of Vibration and Control, 2015, 21(16): 3359-3367. doi: 10.1177/1077546314522490
    [15] LIANG X, ZHA X, JIANG X, et al. Semi-analytical solution for dynamic behavior of a fluid-conveying pipe with different boundary conditions[J]. Ocean Engineering, 2018, 163: 183-190. doi: 10.1016/j.oceaneng.2018.05.060
    [16] 李子丰. 油气井杆管柱力学研究进展与争论[J]. 石油学报, 2016, 37(4): 531-556.

    LI Z F. Research advances and debates on tubular mechanics in oil and gas wells[J]. Acta Petrolei Sinica, 2016, 37(4): 531-556. (in Chinese)
    [17] PAÏDOUSSIS M P. Fluid-structure interactions: volume 1[M]. 2nd ed. Amsterdam: Elsevier, 2014: 131
    [18] BANERJEE J R, SU H. Development of a dynamic stiffness matrix for free vibration analysis of spinning beams[J]. Computers & Structures, 2004, 82(23-24): 2189-2197.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  38
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回