留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速成型中提高成型精度的曲面分层

王军凯 王春香

王军凯,王春香. 快速成型中提高成型精度的曲面分层[J]. 机械科学与技术,2023,42(3):439-445 doi: 10.13433/j.cnki.1003-8728.20200593
引用本文: 王军凯,王春香. 快速成型中提高成型精度的曲面分层[J]. 机械科学与技术,2023,42(3):439-445 doi: 10.13433/j.cnki.1003-8728.20200593
WANG Junkai, WANG Chunxiang. Curved Layer Slicing for Improving Accuracy in Rapid Prototyping[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 439-445. doi: 10.13433/j.cnki.1003-8728.20200593
Citation: WANG Junkai, WANG Chunxiang. Curved Layer Slicing for Improving Accuracy in Rapid Prototyping[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 439-445. doi: 10.13433/j.cnki.1003-8728.20200593

快速成型中提高成型精度的曲面分层

doi: 10.13433/j.cnki.1003-8728.20200593
基金项目: 包头市科技计划项目(2019Z3004-6)
详细信息
    作者简介:

    王军凯(1995−),硕士研究生,研究方向为逆向工程与快速成型技术,wjk19951114@163.com

    通讯作者:

    王春香,教授,硕士生导师,wcxcxw@126.com

  • 中图分类号: TP391.7

Curved Layer Slicing for Improving Accuracy in Rapid Prototyping

  • 摘要: 传统成型方式只使用平面层造成零件表面精度不高,针对这一问题研究了曲面混合分层切片,并提出了一种检测成型整体精度的方法。自动检测模型中可以曲面打印的部分,使用更加精准的邻域法向均值算法计算偏移曲面,并对原始模型进行处理生成平面基底;针对实际中较为复杂模型,编写了碰撞检测和成型顺序规划算法,可根据实际成型设备的情况生成无碰撞的刀具路径。最后,实测打印多个零件对比,证明曲面打印能够大幅提升表面质量,拥有更低的表面粗糙度和更高的整体精度。
  • 图  1  挤出机结构

    图  2  整体结构流程图

    图  3  曲面层生成过程

    图  4  曲面偏移

    图  5  邻域点提取

    图  6  节点法向计算

    图  7  算法偏移结果对比

    图  8  面片碰撞检测

    图  9  侧面强制垂直

    图  10  刀具空间

    图  11  成型对比

    图  12  平面及曲面打印轮廓线对比

    图  13  偏差灰度图

    表  1  成型表面质量对比

    打印模式Ra/μmRz/μmRsm/μm
    2°平面打印 129.3 230.3 5.31
    2°曲面打印 42.4 57.8 0.89
    4°平面打印 118.1 217.0 2.90
    4°曲面打印 37.5 53.8 0.74
    6°平面打印 113.4 214.3 1.87
    6°曲面打印 44.8 59.6 0.83
    8°平面打印 88.6 192.8 1.34
    8°曲面打印 60.6 72.8 0.82
    10°平面打印 96.4 173.1 1.17
    10°曲面打印 43.6 57.2 0.85
    下载: 导出CSV

    表  2  模型偏差对比 mm

    模型打印模式平均偏差标准偏差离散值
    飞机 曲面 0.0035 0.0541 0.0029
    平面 0.0888 0.0677 0.0046
    波浪面 曲面 0.0017 0.0704 0.005
    平面 0.0985 0.0819 0.0086
    扇叶 曲面 −0.006 0.0588 0.0062
    平面 0.0936 0.0926 0.086
    海龟 曲面 0.0069 0.0807 0.012
    平面 0.1035 0.1043 0.071
    下载: 导出CSV
  • [1] 王耀, 王春香, 周国勇, 等. 快速成型技术中分层算法的研究综述[J]. 计算机集成制造系统, 2021, 21(3): 828-841. doi: 10.13196/j.cims.2021.03.015

    WANG Y, WANG C X, ZHOU G Y, et al. Review of research on slicing algorithm in rapid prototyping technology[J]. Computer Integrated Manufacturing Systems, 2021, 21(3): 828-841. (in Chinese) doi: 10.13196/j.cims.2021.03.015
    [2] CHAKRABORTY D, REDDY B A, CHOUDHURY A R. Extruder path generation for curved layer fused deposition modeling[J]. Computer-Aided Design, 2008, 40(2): 235-243. doi: 10.1016/j.cad.2007.10.014
    [3] ETIENNE J, RAY N, PANOZZO D, et al. CurviSlicer: slightly curved slicing for 3-axis printers[J]. ACM Transactions on Graphics, 2019, 38(4): 81.
    [4] LLEWELLYN-JONES T, ALLEN R, TRASK R. Curved layer fused filament fabrication using automated toolpath generation[J]. 3D Printing and Additive Manufacturing, 2016, 3(4): 236-243. doi: 10.1089/3dp.2016.0033
    [5] ALSHARHAN A T, CENTEA T, GUPTA S K. Enhancing mechanical properties of thin-walled structures using non-planar extrusion based additive manufacturing[C]//Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. Los Angeles: ASME, 2017: V002T01A016
    [6] 冯晓静, 崔滨, 刘亚雄, 等. 利用模型分解的曲面分层五轴挤出打印装置及工艺[J]. 西安交通大学学报, 2019, 53(4): 24-30. doi: 10.7652/xjtuxb201904004

    FENG X J, CUI B, LIU Y X, et al. 5-axis curved layer material extrusion modeling device and processing based on model decomposition[J]. Journal of Xi′an Jiaotong University, 2019, 53(4): 24-30. (in Chinese) doi: 10.7652/xjtuxb201904004
    [7] KHURANA J B, DINDA S, SIMPSON T W. Active-Z printing: a new approach to increasing 3D printed part strength[C]//Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. 2017: 1627-1644
    [8] JIN Y, DU J K, HE Y, et al. Modeling and process planning for curved layer fused deposition[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 273-285. doi: 10.1007/s00170-016-9743-5
    [9] SINGAMNENI S, DIEGEL O, HUANG B, et al. Curved-layer fused deposition modelling[J]. Journal for New Generation Sciences, 2010, 8(2): 95-107.
    [10] HUANG B. Development of a software procedure for curved layered fused deposition modelling (CLFDM)[D]. Auckland: Auckland University of Technology, 2009
    [11] AHLERS D, WASSERFALL F, HENDRICH N, et al. 3D printing of nonplanar layers for smooth surface generation[C]//Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering. Vancouver: IEEE, 2019: 1737-1743
    [12] 牛其华. 基于体素的电弧增材制造曲面分层及路径规划方法研究[D]. 武汉: 华中科技大学, 2019

    NIU Q H. Research of curved layer and path planning method based on voxel for wire arc additive manufacturing[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [13] 金宇鹏. 机器人增材制造曲面分层与中轴路径规划算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019

    JIN Y P. Surface layering and central axis path planning algorithm for robotic additive manufacturing[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [14] 刘灏强, 曹良成, 朱文, 等. 曲面共形3D打印轨迹路径的生成方法[J]. 机械科学与技术, 2018, 37(3): 418-423. doi: 10.13433/j.cnki.1003-8728.2018.0314

    LIU H Q, CAO L C, ZHU W, et al. Path generation method for surface conformal 3D printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(3): 418-423. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2018.0314
    [15] HUANG B, SINGAMNENI S. A mixed-layer approach combining both flat and curved layer slicing for fused deposition modelling[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2015, 229(12): 2238-2249. doi: 10.1177/0954405414551076
    [16] ZHAO D H, GUO W Z, GAO F. Research on curved layer fused deposition modeling with a variable extruded filament[J]. Journal of Computing and Information Science in Engineering, 2020, 20(4): 041014. doi: 10.1115/1.4045637
    [17] 余道洋. 3D打印机G代码预处理优化算法[J]. 中国机械工程, 2019, 30(1): 85-89 + 112. doi: 10.3969/j.issn.1004-132X.2019.01.012

    YU D Y. G code preprocessing optimization algorithm for 3D printers[J]. China Mechanical Engineering, 2019, 30(1): 85-89 + 112. (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.01.012
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  66
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回