留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球形铸造碳化钨对PDC钻头喷焊层冲蚀性能的影响

幸雪松 张会增 胡正惠 刘君

幸雪松,张会增,胡正惠, 等. 球形铸造碳化钨对PDC钻头喷焊层冲蚀性能的影响[J]. 机械科学与技术,2023,42(2):294-300 doi: 10.13433/j.cnki.1003-8728.20200570
引用本文: 幸雪松,张会增,胡正惠, 等. 球形铸造碳化钨对PDC钻头喷焊层冲蚀性能的影响[J]. 机械科学与技术,2023,42(2):294-300 doi: 10.13433/j.cnki.1003-8728.20200570
XING Xuesong, ZHANG Huizeng, HU Zhenghui, LIU Jun. Influence of Spherica Cast Tungsten Carbide on Erosion Resistance of Spray Welding Coating of PDC Drill Bit[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 294-300. doi: 10.13433/j.cnki.1003-8728.20200570
Citation: XING Xuesong, ZHANG Huizeng, HU Zhenghui, LIU Jun. Influence of Spherica Cast Tungsten Carbide on Erosion Resistance of Spray Welding Coating of PDC Drill Bit[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 294-300. doi: 10.13433/j.cnki.1003-8728.20200570

球形铸造碳化钨对PDC钻头喷焊层冲蚀性能的影响

doi: 10.13433/j.cnki.1003-8728.20200570
基金项目: 中国石油科技创新基金项目(2020D-5007-0210)、四川省重点研发项目(21ZDYF3109)及四川省重点研发项目(21SYSX0054)
详细信息
    作者简介:

    幸雪松(1978−),高级工程师,硕士,研究方向为钻完井设计及研究,1218133030@qq.com

  • 中图分类号: TE24

Influence of Spherica Cast Tungsten Carbide on Erosion Resistance of Spray Welding Coating of PDC Drill Bit

  • 摘要: 本研究采用氧乙炔喷焊方法制备了不同含量的球形碳化钨和多角状碳化钨颗粒增强的镍基喷焊涂层,研究了钢体PDC钻头碳化钨喷焊层的抗冲蚀性能。结果表明:随着球形碳化钨含量的降低,喷焊层的显微硬度降低,断裂韧性增加,孔隙率先增大后趋于稳定;喷焊涂层的抗冲蚀性随球形碳化钨含量的降低呈先降低后升高的趋势,耐腐蚀性是影响喷焊涂层抗冲蚀性最主要的因素。当球形碳化钨含量为30%时,样品抗泥浆腐蚀性能最差,腐蚀—冲蚀互作用最强,导致样品受冲蚀磨损最严重。建议球形碳化钨含量不低于40%,可以保持喷焊层较高的硬度和抗冲蚀性能。
  • 图  1  铸造碳化钨颗粒和镍基合金颗粒

    图  2  试样实物照片及3号试样EDS分析结果

    图  3  冲蚀实验装置

    图  4  不同CTC-S/CTS-A含量喷焊层的力学性能和孔隙度

    图  5  球形碳化钨和多角状碳化钨喷焊层金相组织照片

    图  6  不同CTC-S/CTS-A含量喷焊层的极化曲线

    图  7  冲蚀实验后不同喷焊层的体积损失

    图  8  冲蚀实验后不同喷焊层的冲蚀表面三维轮廓图

    图  9  冲蚀实验后不同喷焊层的冲蚀深度曲线

    图  10  冲蚀实验后不同喷焊层的截面SEM形貌图

    表  1  试样详细信息

    序号球形铸造
    w(碳化钨)/%
    角形铸造
    w(碳化钨)/%
    w(镍基合金颗粒)/%
    1 60 0 40
    2 40 20 40
    3 30 30 40
    4 20 40 40
    5 0 60 40
    下载: 导出CSV

    表  2  不同喷焊层极化曲线拟合数据

    试样序号腐蚀电位E corr/V腐蚀电流密度I corr/(µA·cm−2
    1−0.3350.101
    2−0.3670.352
    3−0.4176.432
    4−0.3924.515
    5−0.3772.714
    下载: 导出CSV
  • [1] 周龙昌. 堆焊技术在钢体PDC钻头表面硬化中的应用[J]. 石油机械, 2004, 32(5): 38-40 doi: 10.3969/j.issn.1001-4578.2004.05.013

    ZHOU L C. Application of repair welding on surface hardening of steel body PDC bit[J]. China Petroleum Machinery, 2004, 32(5): 38-40 (in Chinese) doi: 10.3969/j.issn.1001-4578.2004.05.013
    [2] 李树盛, 马德坤, 侯季康. 钢体PDC钻头齿孔间距的精确计算方法[J]. 石油机械, 1996, 24(6): 1-3 + 17 doi: 10.16082/j.cnki.issn.1001-4578.1996.06.001

    LI S S, MA D K, HOU J K. Methood for calculating space between tooth holes of PDC bits[J]. China Petroleum Machinery, 1996, 24(6): 1-3 + 17 (in Chinese) doi: 10.16082/j.cnki.issn.1001-4578.1996.06.001
    [3] TAYLOR M R, MURDOCK A D, EVANS S M. High penetration rates and extended bit life through revolutionary hydraulic and mechanical design in PDC drill bit development[J]. SPE Drilling & Completion, 1999, 14(1): 34-41
    [4] 徐建飞, 邹德永. 喷焊技术在钢体PDC钻头表面硬化中的应用[J]. 金刚石与磨料磨具工程, 2017, 37(4): 48-52 doi: 10.13394/j.cnki.jgszz.2017.4.0010

    XU J F, ZOU D Y. Application of spray welding technology in steel body PDC bit's surface hardening[J]. Diamond & Abrasives Engineering, 2017, 37(4): 48-52 (in Chinese) doi: 10.13394/j.cnki.jgszz.2017.4.0010
    [5] SUE A, SRESHTA H, QIU B H. Improved hardfacing for drill bits and drilling tools[J]. Journal of Thermal Spray Technology, 2011, 20(1-2): 372-377 doi: 10.1007/s11666-010-9569-x
    [6] LEECH P W, LI X S, ALAM N. Comparison of abrasive wear of a complex high alloy hardfacing deposit and WC-Ni based metal matrix composite[J]. Wear, 2012, 294-295: 380-386 doi: 10.1016/j.wear.2012.07.015
    [7] HONG E J, KAPLIN B, YOU T, et al. Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles[J]. Wear, 2011, 270: 591-597 doi: 10.1016/j.wear.2011.01.015
    [8] REYES M, NEVILLE A. Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore[J]. Wear, 2003, 255(7-12): 1143-1156 doi: 10.1016/S0043-1648(03)00151-0
    [9] 唐伟, 刘宝伟, 李继彪, 等. 耐腐蚀合金套管磨损机理试验研究[J]. 石油机械, 2018, 46(6): 98-104 doi: 10.16082/j.cnki.issn.1001-4578.2018.06.019

    TANG W, LIU B W, LI J B, et al. Experimental study on wear mechanism of corrosion-resistant alloy casing[J]. China Petroleum Machinery, 2018, 46(6): 98-104 (in Chinese) doi: 10.16082/j.cnki.issn.1001-4578.2018.06.019
    [10] DESHPANDE P K, LI J H, LIN R Y. Infrared processed Cu composites reinforced with WC particles[J]. Materials Science and Engineering:A, 2006, 429(1-2): 58-65 doi: 10.1016/j.msea.2006.04.124
    [11] WU P, DU H M, CHEN X L, et al. Influence of WC particle behavior on the wear resistance properties of Ni-WC composite coatings[J]. Wear, 2004, 257(1-2): 142-147 doi: 10.1016/j.wear.2003.10.019
    [12] 谢焕文, 刘辛, 胡可, 等. 碳化钨粉末对聚晶金刚石复合片钻头胎体组织与力学性能的影响[J]. 复合材料学报, 2019, 36(5): 1235-1243 doi: 10.13801/j.cnki.fhclxb.20180706.001

    XIE H W, LIU X, HU K, et al. Effect of cast tungsten carbide powders on microstructure and mechanical properties of polycrystalline diamond compact bit matrix[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1235-1243 (in Chinese) doi: 10.13801/j.cnki.fhclxb.20180706.001
    [13] LIU J, YANG S, XIA W S, et al. Microstructure and wear resistance performance of Cu-Ni-Mn alloy based hardfacing coatings reinforced by WC particles[J]. Journal of Alloys and Compounds, 2016, 654: 63-70 doi: 10.1016/j.jallcom.2015.09.130
    [14] CHENITI B, MIROUD D, HVIZDOŠ P, et al. Investigation of WC decarburization effect on the microstructure and wear behavior of WC-Ni hardfacing under dry and alkaline wet conditions[J]. Materials Chemistry and Physics, 2018, 208: 237-247 doi: 10.1016/j.matchemphys.2018.01.052
    [15] AMADO J M, TOBAR M J, ALVAREZ J C, et al. Laser cladding of tungsten carbides (Spherotene®) hardfacing alloys for the mining and mineral industry[J]. Applied Surface Science, 2009, 255(10): 5553-5556 doi: 10.1016/j.apsusc.2008.07.198
    [16] 胡可, 谢焕文, 刘辛, 等. 铸造碳化钨颗粒增强PDC钻头胎体的三体磨损行为[J]. 中国有色金属学报, 2020, 30(2): 364-371 doi: 10.11817/j.ysxb.1004.0609.2020-36358

    HU K, XIE H W, LIU X, et al. Three-body abrasive wear behavior of PDC drill bit matrix reinforced by cast tungsten carbide particles[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(2): 364-371 (in Chinese) doi: 10.11817/j.ysxb.1004.0609.2020-36358
    [17] HUANG Y, DING X, YUAN C Q, et al. Slurry erosion behaviour and mechanism of HVOF sprayed micro-nano structured WC-CoCr coatings in NaCl medium[J]. Tribology International, 2020, 148: 106315 doi: 10.1016/j.triboint.2020.106315
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  59
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回