留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形状记忆合金驱动的仿人腕关节机构理论与运动控制

尹海斌 薛欢 章志大 李玉峰

尹海斌,薛欢,章志大, 等. 形状记忆合金驱动的仿人腕关节机构理论与运动控制[J]. 机械科学与技术,2023,42(2):181-189 doi: 10.13433/j.cnki.1003-8728.20200566
引用本文: 尹海斌,薛欢,章志大, 等. 形状记忆合金驱动的仿人腕关节机构理论与运动控制[J]. 机械科学与技术,2023,42(2):181-189 doi: 10.13433/j.cnki.1003-8728.20200566
YIN Haibin, XUE Huan, ZHANG Zhida, LI Yufeng. Mechanism Theory and Motion Control of Humanoid Wrist Actuated by Shape Memory Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 181-189. doi: 10.13433/j.cnki.1003-8728.20200566
Citation: YIN Haibin, XUE Huan, ZHANG Zhida, LI Yufeng. Mechanism Theory and Motion Control of Humanoid Wrist Actuated by Shape Memory Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 181-189. doi: 10.13433/j.cnki.1003-8728.20200566

形状记忆合金驱动的仿人腕关节机构理论与运动控制

doi: 10.13433/j.cnki.1003-8728.20200566
基金项目: 国家自然科学基金重大研究计划“共融机器人”培育项目(91848102)
详细信息
    作者简介:

    尹海斌(1979−),教授,博士生导师,研究方向为机器人技术与智能装备,chinaliuyin@whut.edu.cn

  • 中图分类号: TH39; TP241.3

Mechanism Theory and Motion Control of Humanoid Wrist Actuated by Shape Memory Alloy

  • 摘要: 为提高仿人腕关节的运动性能,设计了一款形状记忆合金驱动的仿人腕关节样机,采用拮抗驱动方式实现对仿人腕关节的位置控制,并在相关理论和仿真分析的基础上,通过实验证明该系统模型具有一定的精度。通过样机运动控制实验,研究了拮抗驱动方式对系统运动性能的影响。结果表明,在拮抗驱动方式的不同频率信号跟踪实验中,对于单向正弦信号,跟踪误差最小为[−0.5°, 1°],最大为[−1.5°, 1.5°];对于双向正弦信号,腕关节能实现双向连续偏转,且当信号频率为1/15 Hz时,位置误差均小于[−1.5°, 1.5°]。相比于采用单根形状记忆合金丝驱动,拮抗驱动方式有利于提升位置控制精度和双向偏转能力。
  • 图  1  仿人腕关节结构

    图  2  实验平台

    图  3  腕关节偏转示意图

    图  4  腕关节系统模型

    图  5  系统开环仿真与实验

    图  6  阶梯信号轨迹跟踪实验

    图  7  正弦信号轨迹跟踪实验

    图  8  1/20 Hz正弦信号轨迹跟踪实验

    图  9  1/15 Hz正弦信号轨迹跟踪实验

    图  10  1/10 Hz正弦信号轨迹跟踪实验

    图  11  1/5 Hz正弦信号轨迹跟踪实验

    图  12  1/15 Hz正弦信号轨迹跟踪实验

    图  13  1/5 Hz正弦信号轨迹跟踪实验

    表  1  SMA相关参数

    参数数值参数数值
    直径/mm 0.15 寿命/次 > 106
    电阻R/(Ω·m−1) 61 密度/(mg·m−1) 112
    最大电流/A 0.35
    下载: 导出CSV

    表  2  实验装置相关参数

    参数数值参数数值
    EMartensite/MPa600 EAustenite/MPa1073
    Tamb/℃20Cpressure/[J·(kg·℃)−1]320
    mwire/(kg·m−11.12×10−4 h120
    h20.001Afinish/℃68
    Astart/℃46Mfinish/℃40
    Mstart/℃60CAustenite/(MPa·℃−110
    CMartensite/(MPa·℃−110l0/mm500
    k/(N·mm−10.13 α/(°)23
    β/(°)73.6m/g55
    llink/mm40 l1/mm17.8
    l2/mm43.5h/mm35
    J/(kg·mm−229.33
    下载: 导出CSV
  • [1] 孙英飞, 罗爱华. 我国工业机器人发展研究[J]. 科学技术与工程, 2012, 12(12): 2912-2918 + 3031 doi: 10.3969/j.issn.1671-1815.2012.12.031

    SUN Y F, LUO A H. Development research on China′s industrial robot[J]. Science Technology and Engineering, 2012, 12(12): 2912-2918 + 3031 (in Chinese) doi: 10.3969/j.issn.1671-1815.2012.12.031
    [2] 彭艳, 刘勇敢, 杨扬, 等. 软体机械手爪在果蔬采摘中的应用研究进展[J]. 农业工程学报, 2018, 34(9): 11-20 doi: 10.11975/j.issn.1002-6819.2018.09.002

    PENG Y, LIU Y G, YANG Y, et al. Research progress on application of soft robotic gripper in fruit and vegetable picking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 11-20 (in Chinese) doi: 10.11975/j.issn.1002-6819.2018.09.002
    [3] 颜云辉, 徐靖, 陆志国, 等. 仿人服务机器人发展与研究现状[J]. 机器人, 2017, 39(4): 551-564 doi: 10.13973/j.cnki.robot.2017.0551

    YAN Y H, XU J, LU Z G, et al. Development and research status of humanoid service robots[J]. Robot, 2017, 39(4): 551-564 (in Chinese) doi: 10.13973/j.cnki.robot.2017.0551
    [4] 唐华彬. 仿人机器人脚部部件的设计与仿真研究[D]. 武汉: 华中科技大学, 2017

    TANG H B. Design and simulation of foot parts of humanoid robot[D]. Wuhan: Huazhong University of Science and Technology, 2017 (in Chinese)
    [5] ELANGO N, FAUDZI A A M. A review article: investigations on soft materials for soft robot manipulations[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5-8): 1027-1037 doi: 10.1007/s00170-015-7085-3
    [6] 何睿. 气动肌肉驱动机械手臂的仿生设计与类人运动控制研究[D]. 北京: 北京工业大学, 2019

    HE R. Research on bionic design and human-like motion control of robotic arm driven by pneumatic artificial muscles[D]. Bejing: Bejing University of Technology, 2019 (in Chinese)
    [7] 范伯骞. 液压驱动下肢外骨骼机器人关键技术研究[D]. 杭州: 浙江大学, 2017

    FAN B Q. Research on the key technologies of the hydraulic lower limb exoskeleton robot[D]. Hangzhou: Zhejiang University, 2017 (in Chinese)
    [8] 教柳, 张保成, 张开升, 等. 两关节压力驱动柔性仿生机器鱼的设计与仿真[J]. 力学学报, 2020, 52(3): 817-827 doi: 10.6052/0459-1879-20-001

    JIAO L, ZHANG B C, ZHANG K S, et al. Design and simulation of two-joint pressure-driven soft bionic fish[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 817-827 (in Chinese) doi: 10.6052/0459-1879-20-001
    [9] 张忠强, 邹娇, 丁建宁, 等. 软体机器人驱动研究现状[J]. 机器人, 2018, 40(5): 648-659 doi: 10.13973/j.cnki.robot.180272

    ZHANG Z Q, ZOU J, DING J N, et al. Research status of the soft robot driving[J]. Robot, 2018, 40(5): 648-659 (in Chinese) doi: 10.13973/j.cnki.robot.180272
    [10] ANDRIKOPOULOS G, NIKOLAKOPOULOS G, MANESIS S. Design and development of an exoskeletal wrist prototype via pneumatic artificial muscles[J]. Meccanica, 2015, 50(11): 2709-2730 doi: 10.1007/s11012-015-0199-8
    [11] HOŠOVSKÝ A, PITEĽ J, ŽIDEK K, et al. Dynamic characterization and simulation of two-link soft robot arm with pneumatic muscles[J]. Mechanism and Machine Theory, 2016, 103: 98-116 doi: 10.1016/j.mechmachtheory.2016.04.013
    [12] 李铁风, 李国瑞, 梁艺鸣, 等. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766 doi: 10.6052/0459-1879-16-159

    LI T F, LI G R, LIANG Y M, et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766 (in Chinese) doi: 10.6052/0459-1879-16-159
    [13] HUBBARD J J, FLEMING M, PALMRE V, et al. Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3): 540-551 doi: 10.1109/JOE.2013.2259318
    [14] JI X B, LIU X C, CACUCCIOLO V, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators[J]. Science Robotics, 2019, 4(37): eaaz6451 doi: 10.1126/scirobotics.aaz6451
    [15] IONOV L. Hydrogel-based actuators: possibilities and limitations[J]. Materials Today, 2014, 17(10): 494-503 doi: 10.1016/j.mattod.2014.07.002
    [16] LI H, GO G, KO S Y, et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery[J]. Smart Materials and Structures, 2016, 25(2): 027001 doi: 10.1088/0964-1726/25/2/027001
    [17] YIN H B, KONG C, LI J F, et al. Modeling of grasping force for a soft robotic gripper with variable stiffness[J]. Mechanism and Machine Theory, 2018, 128: 254-274 doi: 10.1016/j.mechmachtheory.2018.05.005
    [18] HWANG D, HIGUCHI T. A rotary actuator using shape memory alloy (SMA) wires[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(5): 1625-1635 doi: 10.1109/TMECH.2013.2290545
    [19] CHEN Y C, SHEN X, LI J F, et al. Nonlinear hysteresis identification and compensation based on the discrete Preisach model of an aircraft morphing wing device manipulated by an SMA actuator[J]. Chinese Journal of Aeronautics, 2019, 32(4): 1040-1050 doi: 10.1016/j.cja.2018.09.006
    [20] SRIVASTAVA A, WARD C, PATEL R V. Adaptive neural preisach model and model predictive control of shape memory alloy actuators[C]// 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich, Germany: IEEE, 2017: 1179-1184
    [21] LI R, FENG Y, HU Z D. Dynamic surface control of shape memory alloy actuating systems with inverse duhem hysteresis compensation[C]// 2018 IEEE International Conference on Mechatronics and Automation (ICMA). Changchun, China: IEEE, 2018: 1305-1310
    [22] TRONG TAI N, AHN K K. Adaptive proportional-integral-derivative tuning sliding mode control for a shape memory alloy actuator[J]. Smart Materials and Structures, 2011, 20(5): 055010 doi: 10.1088/0964-1726/20/5/055010
    [23] LEE J, JIN M L, AHN K K. Precise tracking control of shape memory alloy actuator systems using hyperbolic tangential sliding mode control with time delay estimation[J]. Mechatronics, 2013, 23(3): 310-317 doi: 10.1016/j.mechatronics.2013.01.005
    [24] REZAUL ISLAM A B M, KARADOĞAN E. Sensitivity and uncertainty analysis of one-dimensional tanaka and liang-rogers shape memory alloy constitutive models[J]. Materials, 2019, 12(10): 1687 doi: 10.3390/ma12101687
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  113
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回