留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2Te3基晶棒线锯切片翘曲度的有限元分析

赵华东 马新伟

赵华东, 马新伟. Bi2Te3基晶棒线锯切片翘曲度的有限元分析[J]. 机械科学与技术, 2022, 41(2): 235-238. doi: 10.13433/j.cnki.1003-8728.20200345
引用本文: 赵华东, 马新伟. Bi2Te3基晶棒线锯切片翘曲度的有限元分析[J]. 机械科学与技术, 2022, 41(2): 235-238. doi: 10.13433/j.cnki.1003-8728.20200345
ZHAO Huadong, MA Xinwei. Finite Element Analysis of Wafer Warp Slicing by Wire-saw of Bi2Te3[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 235-238. doi: 10.13433/j.cnki.1003-8728.20200345
Citation: ZHAO Huadong, MA Xinwei. Finite Element Analysis of Wafer Warp Slicing by Wire-saw of Bi2Te3[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 235-238. doi: 10.13433/j.cnki.1003-8728.20200345

Bi2Te3基晶棒线锯切片翘曲度的有限元分析

doi: 10.13433/j.cnki.1003-8728.20200345
基金项目: 

郑州市协同创新重大专项 18XTZX12005

详细信息
    作者简介:

    赵华东(1978-), 教授, 博士, 研究方向为智能制造、半导体加工, 82662906@qq.com

  • 中图分类号: TH165

Finite Element Analysis of Wafer Warp Slicing by Wire-saw of Bi2Te3

  • 摘要: 碲化铋基热电材料切片的翘曲度对热电制冷片的质量有重要影响, 是多线切割过程中必须控制的质量因素。通过建立多线切片过程的顺序耦合热应变分析有限元模型, 以切片表面节点位移反映切片翘曲度。首先建立温度场三维有限元模型, 模拟切割过程温度场分布; 然后以温度场结果为边界条件, 建立热应变分析模型; 按照不同的张紧力、进给速度、线速度工艺参数组合进行仿真模拟, 计算出相应的翘曲度值, 研究翘曲度与各工艺参数之间的关系。结果表明: 张紧力增加, 翘曲度减小; 进给速度增加, 翘曲度增大; 线速度增大, 翘曲度增大。
  • 图  1  网格划分模型

    图  2  翘曲度计算方法

    图  3  张紧力与翘曲度间的关系

    图  4  线速度与翘曲度间的关系

    图  5  进给速度与翘曲度间的关系

    表  1  碲化铋晶棒物理参数

    密度/(g·cm-3) 7.859
    热导率/(W·(m·K)-1) 1.5
    膨胀系数/(×10-6·K) 1.5×10-5
    比热/(J·(kg·K)-1) 2.33×10-6
    杨氏模量/GPa 510
    泊松比 0.063 6
    下载: 导出CSV
  • [1] CHEN Y, HOU X N, MA C Y, et al. Review of development status of Bi2Te3-based semiconductor thermoelectric power generation[J]. Advances in Materials Science and Engineering, 2018, 2018: 1210562, doi: 10.1155/2018/1210562
    [2] BHUKESH S K, KUMAR A, GAWARE S K. Bismuth telluride (Bi2Te3) thermoelectric material as a transducer for solar energy application[J]. Materials Today: Proceedings, 2020, 26: 3131-3137 doi: 10.1016/j.matpr.2020.02.646
    [3] MAMUR H, BHUIYAN M R A, KORKMAZ F, et al. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 4159-4169 doi: 10.1016/j.rser.2017.10.112
    [4] 高远, 曹洪杨. n型碲化铋基材料的制备及其热电性能研究[J]. 稀有金属与硬质合金, 2017, 45(4): 62-66 https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201704014.htm

    GAO Y, CAO H Y. Study on preparation and thermoelectric properties of n-type Bi2Te3 based material[J]. Rare Metals and Cemented Carbides, 2017, 45(4): 62-66 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201704014.htm
    [5] 郭亮, 王凤美, 米涛. 多晶碲化铋基热电材料制备及性能测试[J]. 电源技术, 2019, 43(8): 1370-1372, 1390 doi: 10.3969/j.issn.1002-087X.2019.08.036

    GUO L, WANG F M, MI T. Performance optimization for polycrystalline Bi2Te3-based radioisotope thermoelectric generators[J]. Chinese Journal of Power Sources, 2019, 43(8): 1370-1372, 1390 (in Chinese). doi: 10.3969/j.issn.1002-087X.2019.08.036
    [6] 李小亚, 陈炎, 郝峰, 等. 碲化铋基热电半导体晶体研究[J]. 中国材料进展, 2017, 36(4): 270-278 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201704004.htm

    LI X Y, CHEN Y, HAO F, et al. Research on bismuth telluride based thermoelectric semiconductor crystals[J]. Materials China, 2017, 36(4): 270-278 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201704004.htm
    [7] GUPTA P, KULKARNI M S. Warp of silicon wafers produced from wire saw slicing: modeling, simulation, and experiments[J]. ECS Transactions, 2006, 2(2): 123-134 doi: 10.1149/1.2195654
    [8] YAMADA T, KINAI F, ICHIKAWA T, et al. Warpage analysis of silicon wafer in ingot slicing by wire-saw machine[J]. AIP Conference Proceedings, 2004, 712(1): 1459-1463
    [9] 王建臣, 邓小雷, 王涛. 硅片多线切割的温度场仿真研究[J]. 组合机床与自动化加工技术, 2013(9): 32-34, 38 doi: 10.3969/j.issn.1001-2265.2013.09.009

    WANG J C, DENG X L, WANG T. Research on temperature distribution in silicon wafers slicing with wire saw[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(9): 32-34, 38 (in Chinese). doi: 10.3969/j.issn.1001-2265.2013.09.009
    [10] BHAGAVAT S, KAO I. A finite element analysis of temperature variation in silicon wafers during wiresaw slicing[J]. International Journal of Machine Tools and Manufacture, 2008, 48(1): 95-106 doi: 10.1016/j.ijmachtools.2007.07.009
    [11] YAMADA T, FUKUNAGA M, ICHIKAWA T, et al. Prediction of warping in silicon wafer slicing with wiresaw[J]. Theoretical and Applied Mechanics, 2002, 51: 251-258
    [12] 陈阳. SiC单晶线锯切片微裂纹损伤深度及翘曲度有限元分析[D]. 济南: 山东大学, 2016

    CHEN Y. Finite element analysis on wafer micro-crack damage layer depth and warp in wire saw slicing SiC crystal[D]. Ji'nan: Shandong University, 2016 (in Chinese)
    [13] 刘志涛. 碲化铋纳米材料的制备及电子结构和力学性质的模拟[D]. 哈尔滨: 哈尔滨工业大学, 2016

    LIU Z T. Preparation of bismuth telluride nanomaterials and simulatio of the electronic structure and the machanical properties[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese)
    [14] 杨含欣. 碲化铋基微型热电器件的研究[D]. 杭州: 浙江大学, 2019

    YANG H X. Study on Bi2Te3-based micro thermoelectric devices[D]. Hangzhou: Zhejiang University, 2019 (in Chinese)
    [15] JOHNSEN L, OLSEN J E, BERGSTRØM T, et al. Heat transfer during multiwire sawing of silicon Wafers[J]. Journal of Thermal Science and Engineering Applications, 2012, 4(3): 031006 doi: 10.1115/1.4006591
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  90
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回