留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水力聚结器结构参数优选

邢雷 蒋明虎 赵立新 高金明

邢雷,蒋明虎,赵立新, 等. 水力聚结器结构参数优选[J]. 机械科学与技术,2021,40(4):527-533 doi: 10.13433/j.cnki.1003-8728.20200249
引用本文: 邢雷,蒋明虎,赵立新, 等. 水力聚结器结构参数优选[J]. 机械科学与技术,2021,40(4):527-533 doi: 10.13433/j.cnki.1003-8728.20200249
XING Lei, JIANG Minghu, ZHAO Lixin, GAO Jinming. Structural Parameters Optimization of Hydraulic Coalescer[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 527-533. doi: 10.13433/j.cnki.1003-8728.20200249
Citation: XING Lei, JIANG Minghu, ZHAO Lixin, GAO Jinming. Structural Parameters Optimization of Hydraulic Coalescer[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 527-533. doi: 10.13433/j.cnki.1003-8728.20200249

水力聚结器结构参数优选

doi: 10.13433/j.cnki.1003-8728.20200249
基金项目: 国家高技术研究发展计划(2012AA061303)与东北石油大学龙江学者配套经费支持项目(lj201803)
详细信息
    作者简介:

    邢雷(1990−),讲师,博士,研究方向为旋流分离理论及应用,井下油水分离及同井回注,Nepuxinglei@163.com

    通讯作者:

    赵立新,教授,博士生导师,lx_zhao@126.com

  • 中图分类号: TQ051.8

Structural Parameters Optimization of Hydraulic Coalescer

  • 摘要: 为了增强水力旋流器对小粒径油滴的分离性能,基于旋流分离原理提出一种可通过增大油滴间碰撞机率使小油滴碰撞聚结的水力聚结器结构。借助正交试验方法对水力聚结器的主要结构参数进行优化设计,利用Euler-Euler模型与群体平衡模型(Population Balance Model,PBM)相结合的方法,开展水力聚结器结构参数对油滴分布特性及聚结性能的影响研究,得出聚结器内油滴粒度分布聚结性能受结构参数变化的影响规律,并获得了最佳的结构参数配比。结果表明:水力聚结器对油水混合液中的油滴呈现出了较好的聚结效果,聚结器的聚结内芯底径D3、锥段长度L4、出口管长度L5均会对聚结器内油滴粒径分布产生影响,且各参数对聚结性能影响显著性由高到低为D3 > L4 > L5。优化得出最佳结构参数配比方案为C3A2B2L4 = 600 mm、L5 = 100 mm、D3 = 10 mm),最佳结构参数条件下混合液中油滴粒度分布在25 ~ 55 μm时,经水力聚结器聚结后油滴粒度分布均值增加到524.7 μm,较初始结构聚结后的平均粒径增加了48.56%。
  • 图  1  水力聚结器工作原理图

    图  2  水力聚结器结构图

    图  3  入口油滴粒度分布

    图  4  试验17#与试验5#聚结器轴向截面油滴粒径分布云图

    图  5  试验17#与试验5#聚结器出口油滴粒度频数统计对比

    图  6  实验流程及工艺

    图  7  聚结器实验样机

    图  8  聚结器入口及出口油滴粒径均值对比

    表  1  水力聚结器初始结构参数

    参数名称数值/mm
    主直径D1120
    入口管长度L180
    螺旋流道长度L280
    柱段聚结腔长度L3100
    锥段聚结腔长度L4400
    出口管长度L5100
    出口管内径D260
    聚结内芯底径D315
    下载: 导出CSV

    表  2  聚结器结构参数因素水平表

    水平ABC
    锥段聚结腔长度L4/mm出口管长度L5/mm聚结内芯底径D3/mm
    1 400 80 20
    2 600 100 15
    3 500 60 10
    4 300 120 25
    下载: 导出CSV

    表  3  正交试验设计表

    试验序号AB空列C空列组合平均粒径/μm
    1 1 1 1 1 1 A1B1C1 301.07
    2 1 2 2 2 2 A1B2C2 353.18
    3 1 3 3 3 3 A1B3C3 442.34
    4 1 4 4 4 4 A1B4C4 263.96
    5 2 1 2 3 4 A2B1C3 512.84
    6 2 2 1 4 3 A2B2C4 307.17
    7 2 3 4 1 2 A2B3C1 347.55
    8 2 4 3 2 1 A2B4C2 360.50
    9 3 1 3 4 2 A3B1C4 296.07
    10 3 2 4 3 1 A3B2C3 451.70
    11 3 3 1 2 4 A3B3C2 392.40
    12 3 4 2 1 3 A3B4C1 309.52
    13 4 1 4 2 3 A4B1C2 323.43
    14 4 2 3 1 4 A4B2C1 276.87
    15 4 3 2 4 1 A4B3C4 252.62
    16 4 4 1 3 2 A4B4C3 354.17
    K1 1 360.55 1 433.41 1 354.81 1 235.01 1 365.89 T=5 545.38
    Q=2 000 811.35
    P=1 921 954.05
    K2 1 528.06 1 388.91 1 428.15 1 429.52 1 350.96
    K3 1 449.69 1 434.92 1 375.79 1 761.04 1 382.46
    K4 1 207.09 1 288.14 1 386.64 1 119.80 1 446.07
    k1 340.14 358.35 338.70 308.75 341.47
    k2 382.01 347.23 357.03 357.38 337.74
    k3 362.42 358.73 343.95 440.26 345.61
    k4 301.77 322.036 346.66 279.95 361.52
    极差R 320.97 146.77 73.34 641.24 95.10
    下载: 导出CSV

    表  4  方差分析表

    差异源离差平
    方和SS
    自由度df平均离差平
    方和MS
    F显著性
    A14 223.1034 741.0314.04***
    B3 556.0931 185.363.51*
    C59 051.73319 683.9158.28***
    误差e2 026.396337.73
    总和78 857.3115
    注:*显著,***非常显著
    下载: 导出CSV
  • [1] LIU L, ZHAO L X, YANG X, et al. Innovative design and study of an oil-water coupling separation magnetic hydrocyclone[J]. Separation and Purification Technology, 2019, 213: 389-400 doi: 10.1016/j.seppur.2018.12.051
    [2] 何利民, 田洋阳, 罗小明. 一种应用于双锥型液-液旋流器的导叶设计新方法[J]. 石油学报, 2018, 34(3): 581-591

    HE L M, TIAN Y Y, LUO X M. A new method for the guide vanes design in double-cone liquid-liquid cyclone[J]. Acta Petrolei Sinica, 2018, 34(3): 581-591 (in Chinese)
    [3] 王羕. 井下两级串联旋流分离技术研究[D]. 大庆: 东北石油大学, 2014

    WANG Y. Research of downhole two-stage in-series hydrocyclone separation technology[D]. Daqing: Northeast Petroleum University, 2014 (in Chinese)
    [4] 盛庆娇. 新型螺旋入口水力旋流器模拟分析及实验研究[D]. 大庆: 东北石油大学, 2013

    SHENG Q J. Simulation analysis and experimental study on a new type spiral inlet hydrocyclone[D]. Daqing: Northeast Petroleum University, 2013 (in Chinese)
    [5] 蒋明虎, 谭放, 金淑芹, 等. 基于Fluent网格变形的旋流器的形状优化[J]. 化工进展, 2016, 35(8): 2355-2361

    JIANG M H, TAN F, JIN S Q, et al. Sharp optimization of hydrocyclone based on Fluent mesh morphing[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2355-2361 (in Chinese)
    [6] HWANG K J, HWANG Y W, YOSHIDA H. Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics[J]. Chemical Engineering Science, 2013, 85: 62-68 doi: 10.1016/j.ces.2011.12.046
    [7] FAN Y, WANG J G, BAI Z Y, et al. Experimental investigation of various inlet section angles in mini-hydrocyclones using particle imaging velocimetry[J]. Separation and Purification Technology, 2015, 149: 156-164 doi: 10.1016/j.seppur.2015.04.047
    [8] HWANG K J, HWANG Y W, YOSHIDA H, et al. Improvement of particle separation efficiency by installing conical top-plate in hydrocyclone[J]. Powder Technology, 2012, 232: 41-48 doi: 10.1016/j.powtec.2012.07.059
    [9] 赵立新, 王羕, 罗雅君, 等. 溢流管结构对三相分离器分离效率的影响[J]. 流体机械, 2014, 42(3): 6-9, 5 doi: 10.3969/j.issn.1005-0329.2014.03.002

    ZHAO L X, WANG Y, LUO Y J, et al. Effect of overflow tube structure on the separation efficiency of three-phase hydrocyclone[J]. Fluid Machinery, 2014, 42(3): 6-9, 5 (in Chinese) doi: 10.3969/j.issn.1005-0329.2014.03.002
    [10] 徐保蕊, 蒋明虎, 赵立新. 采出液黏度对三相分离旋流器性能的影响[J]. 机械工程学报, 2017, 53(8): 175-182 doi: 10.3901/JME.2017.08.175

    XU B R, JIANG M H, ZHAO L X. Effect of production fluid viscosity on the performance of three phase separation hydrocyclone[J]. Journal of Mechanical Engineering, 2017, 53(8): 175-182 (in Chinese) doi: 10.3901/JME.2017.08.175
    [11] 邢雷, 张勇, 蒋明虎, 等. 轴入式两级串联旋流器流场分析与性能评估[J]. 中国机械工程, 2018, 29(16): 1927-1935 doi: 10.3969/j.issn.1004-132X.2018.16.006

    XING L, ZHANG Y, JIANG M H, et al. Flow filed analysis and performance evaluation on axis-in dual-stage tandem hydrocyclone[J]. China Mechanical Engineering, 2018, 29(16): 1927-1935 (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.16.006
    [12] 王振波, 马艺, 金有海. 导叶式旋流器内油滴运动迁移规律的数值模拟[J]. 高校化学该工程学报, 2011, 25(3): 543-546

    WANG Z B, MA Y, JIN Y H. Movement simulation of the oil droplets migration in the vane-guided hydrocyclone[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(3): 543-546 (in Chinese)
    [13] CUI R, WANG G H, LI M L. Size dependent flow behaviors of particles in hydrocyclone based on multiphase simulation[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2422-2428 doi: 10.1016/S1003-6326(15)63858-4
    [14] 邢雷. 旋流场内离散相油滴运移轨迹研究[D]. 大庆: 东北石油大学, 2016

    XING L. Mechanism and experimental study on trajectory of discrete phase oil droplet in vortex field[D]. Daqing: Northeast Petroleum University, 2016 (in Chinese)
    [15] 张勇, 邢雷, 蒋明虎, 等. 离散相粒径对旋流器分离性能的影响[J]. 东北石油大学学报, 2018, 42(2): 109-116 doi: 10.3969/j.issn.2095-4107.2018.02.013

    ZHANG Y, XING L, JIANG M H, et al. Effects of discrete phase particle size on hydrocyclone separation performance[J]. Journal of Northeast Petroleum University, 2018, 42(2): 109-116 (in Chinese) doi: 10.3969/j.issn.2095-4107.2018.02.013
    [16] 陈浩, 吴文科, 吕斌, 等. 用双锥-内锥型水力旋流器提纯海洋天然气水合物浆体[J]. 过程工程学报, 2018, 18(3): 491-495 doi: 10.12034/j.issn.1009-606X.217343

    CHEN H, WU W K, LV B, et al. Separation and purification of natural gas hydrate slurry mixture by double cone-inner cone hydrocyclone[J]. The Chinese Journal of Process Engineering, 2018, 18(3): 491-495 (in Chinese) doi: 10.12034/j.issn.1009-606X.217343
    [17] 袁惠新, 张新周. 旋流场中聚结过程研究[J]. 化学工程, 2005, 33(5): 30-33, 38 doi: 10.3969/j.issn.1005-9954.2005.05.008

    YUAN H X, ZHANG X Z. Investigation into mechanism of coalescence in vortex field[J]. Chemical Engineering, 2005, 33(5): 30-33, 38 (in Chinese) doi: 10.3969/j.issn.1005-9954.2005.05.008
    [18] 张敏, 袁惠新. 旋流聚结的机理及应用[J]. 流体机械, 2003, 31(5): 29-32 doi: 10.3969/j.issn.1005-0329.2003.05.009

    ZHANG M, YUAN H X. Theory and application of coalescence in hydrocyclone[J]. Fluid Machinery, 2003, 31(5): 29-32 (in Chinese) doi: 10.3969/j.issn.1005-0329.2003.05.009
    [19] 袁晓林, 袁惠新. 旋流场内液滴破碎与临界入口雷诺数的确定[J]. 江南大学学报, 2004, 3(1): 59-61

    YUAN X L, YUAN H X. Breakup of droplets in hydrocyclones and determination of critical Inlet reynolds number[J]. Journal Of Southern Yangtze University , 2004, 3(1): 59-61 (in Chinese)
    [20] SCHÜTZ S, GORBACH G, PIESCHE M. Modeling fluid behavior and droplet interactions during liquid-liquid separation in hydrocyclones[J]. Chemical Engineering Science, 2009, 64(18): 3935-3952 doi: 10.1016/j.ces.2009.04.046
    [21] MEYER M, BOHNET M. Influence of entrance droplet size distribution and feed concentration on separation of immiscible liquids using hydrocyclones[J]. Chemical Engineering & Technology, 2003, 26(6): 660-665
    [22] NOROOZI S, HASHEMABADI S H, CHAMKHA A J. Numerical Analysis of drops coalescence and breakage effects on de-oiling hydrocyclone performance[J]. Separation Science and Technology, 2013, 48(7): 991-1002 doi: 10.1080/01496395.2012.752750
    [23] LI C J, HUANG Q. Analysis of droplet behavior in a de-oiling hydrocyclone[J]. Journal of Dispersion Science and Technology, 2016, 38(3): 317-327
    [24] LUO H A, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AiChE Journal, 1996, 42(5): 1225-1233 doi: 10.1002/aic.690420505
    [25] PRINCE M J, BLANCH H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AiChE Journal, 1990, 36(10): 1485-1499 doi: 10.1002/aic.690361004
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  42
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回