留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底电缆张力弯曲试验装置结构受力有限元分析

乐彦杰 郑新龙 黄崇武 吕安强 卢正通 敬强

乐彦杰,郑新龙,黄崇武, 等. 海底电缆张力弯曲试验装置结构受力有限元分析[J]. 机械科学与技术,2021,40(9):1385-1390 doi: 10.13433/j.cnki.1003-8728.20200226
引用本文: 乐彦杰,郑新龙,黄崇武, 等. 海底电缆张力弯曲试验装置结构受力有限元分析[J]. 机械科学与技术,2021,40(9):1385-1390 doi: 10.13433/j.cnki.1003-8728.20200226
LE Yanjie, ZHENG Xinlong, HUANG Chongwu, LYU Anqiang, LU Zhengtong, JING Qiang. Finite Element Analysis of Structural Stress of Submarine Cable Tension Bending Test Device[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1385-1390. doi: 10.13433/j.cnki.1003-8728.20200226
Citation: LE Yanjie, ZHENG Xinlong, HUANG Chongwu, LYU Anqiang, LU Zhengtong, JING Qiang. Finite Element Analysis of Structural Stress of Submarine Cable Tension Bending Test Device[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1385-1390. doi: 10.13433/j.cnki.1003-8728.20200226

海底电缆张力弯曲试验装置结构受力有限元分析

doi: 10.13433/j.cnki.1003-8728.20200226
基金项目: 国家重点研发计划项目(2016YFB0900705)与国家电网有限公司科技项目(5211011600LF)
详细信息
    作者简介:

    乐彦杰(1986−),高级工程师,研究方向为海底电缆状态监测和试验,lyjdjx@163.com

    通讯作者:

    吕安强,副教授,硕士生导师,博士,lvaqdz@163.com

  • 中图分类号: TH122

Finite Element Analysis of Structural Stress of Submarine Cable Tension Bending Test Device

  • 摘要: 为了测试在大拉力载荷下,海底电缆张力弯曲试验装置是否能正常工作,利用有限元分析方法对鼓轮与海缆进行了建模与仿真,并对整个有限元模型进行了应力、应变和位移分析。结果表明,该张力弯曲试验装置在2×106 N的拉力载荷下,应力最大值达到1.05×108 Pa,并未超过碳钢的屈服强度,没有发生大变形,能够正常工作,装置设计方案合理。
  • 图  1  海底电缆张力弯曲试验装置示意图

    图  2  鼓轮及海缆的几何模型

    图  3  海底电缆有限元模型网格划分效果

    图  4  鼓轮有限元模型网格划分效果

    图  5  应力分布云图

    图  6  鼓轮应力分布云图

    图  7  钢板应力分布曲线

    图  8  弧形方钢应力分布曲线

    图  9  支撑方钢应力分布曲线

    图  10  钢板应变分布曲线

    图  11  弧形方钢应变分布曲线

    图  12  支撑方钢应变分布曲线

    图  13  位移分布云图

    图  14  鼓轮位移分布云图

    图  15  钢板位移分布曲线

    图  16  弧形方钢位移分布曲线

    图  17  支撑方钢位移分布曲线

    表  1  碳钢性能参数表

    密度/(kg·m−3)弹性模量/(N·m−2)泊松比屈服强度/(N·m−2)
    78002.1×10110.282.21×108
    下载: 导出CSV
  • [1] 王裕霜. 国内外海底电缆输电工程综述[J]. 南方电网技术, 2012, 6(2): 26-30

    WANG Y S. Review on submarine cable projects for power transmission worldwide[J]. Southern Power System Technology, 2012, 6(2): 26-30 (in Chinese)
    [2] 马伟锋, 崔维成, 刘涛, 等. 海底电缆观测系统的研究现状与发展趋势[J]. 海岸工程, 2009, 28(3): 76-84 doi: 10.3969/j.issn.1002-3682.2009.03.011

    MA W F, CUI W C, LIU T, et al. Present status and development tendency of submarine cable-connected observation system[J]. Coastal Engineering, 2009, 28(3): 76-84 (in Chinese) doi: 10.3969/j.issn.1002-3682.2009.03.011
    [3] WORZYK T. Submarine power cables: design, installation, repair, environmental aspects[M]. Berlin: Springer, 2009: 1-10
    [4] 胡玉娇. 光纤复合海底电缆机械行为的有限元模型研究[D]. 北京: 华北电力大学, 2018

    HU Y J. Research on finite element model of optical fiber composite submarine cables mechanical behavior[D]. Beijing: North China Electric Power University, 2018 (in Chinese)
    [5] 秦春旭, 栗丙典, 李国明, 等. 基于有限元对220 kV三芯海缆温度场的数值计算[J]. 东北电力大学学报, 2019, 39(4): 5-10

    QIN C X, LI B D, LI G M, et al. Numerical calculation of temperature field of 220 kV three-core submarine cable based on finite element method[J]. Journal of Northeast Dianli University, 2019, 39(4): 5-10 (in Chinese)
    [6] 卢志飞, 宣耀伟, 沈耀军, 等. 基于有限元技术的海底电缆铺设机械结构损伤分析[J]. 舰船科学技术, 2019, 41(6): 187-189

    LU Z F, XUAN Y W, SHEN Y J, et al. Research on the mechanical damage during the lying of submarine cables based on finite element analysis[J]. Ship Science and Technology, 2019, 41(6): 187-189 (in Chinese)
    [7] 刘征. 光纤复合海底电缆故障诊断方法研究[D]. 北京: 华北电力大学, 2016

    LIU Z. Research on fault diagnosis method of optical fiber composite submarine cable[D]. Beijing: North China Electric Power University, 2016 (in Chinese)
    [8] 赵囿林, 张建民, 胡明, 等. 大长度500 kV XLPE超高压海底电缆关键技术研究[J]. 电线电缆, 2020(2): 12-16, 24 doi: 10.3969/j.issn.1672-6901.2020.02.004

    ZHAO Y L, ZHANG J M, HU M, et al. Key technology research for large length 500 kV XLPE UHV submarine cable[J]. Electric Wire & Cable, 2020(2): 12-16, 24 (in Chinese) doi: 10.3969/j.issn.1672-6901.2020.02.004
    [9] 徐志钮, 胡宇航, 赵丽娟, 等. 基于单斜坡法的光电复合海缆温度、应变快速测量方法[J]. 电力自动化设备, 2020, 40(5): 202-208

    XU Z N, HU Y H, ZHAO L J, et al. Rapid temperature and strain measurement method for optic-electric composite submarine cable based on slope-assisted method[J]. Electric Power Automation Equipment, 2020, 40(5): 202-208 (in Chinese)
    [10] 吕安强. 基于分布式光纤应变和温度传感的光纤复合海底电缆状态监测方法研究[D]. 北京: 华北电力大学, 2015

    LYU A Q. Research on condition monitoring of optical fiber composite submarine power cable based on distributed strain and temperature sensing technology using optical fiber[D]. Beijing: North China Electric Power University, 2015 (in Chinese)
    [11] 茅雁, 王瑛. 海底交联聚乙烯电力电缆机械性能试验方法介绍[J]. 电线电缆, 2008(6): 26-27, 42 doi: 10.3969/j.issn.1672-6901.2008.06.008

    MAO Y, WANG Y. Introduction to the mechanical test methods for submarine XLPE power cables[J]. Electric Wire & Cable, 2008(6): 26-27, 42 (in Chinese) doi: 10.3969/j.issn.1672-6901.2008.06.008
    [12] 陈永, 尹成群, 吕安强, 等. 光纤复合海底电缆故障检测与诊断方法[J]. 光通信研究, 2014, 40(3): 56-59

    CHEN Y, YIN C Q, LYU A Q, et al. A novel approach to optical fiber composite submarine cable fault detection and diagnosis[J]. Study on Optical Communications, 2014, 40(3): 56-59 (in Chinese)
    [13] 张火明, 谢卓, 方贵盛, 等. 绷紧式系泊缆冲击张力特性研究[J]. 海洋工程, 2017, 35(5): 23-32

    ZHANG H M, XIE Z, FANG G S, et al. Investigation on the impact tension characteristics of taut mooring lines[J]. The Ocean Engineering, 2017, 35(5): 23-32 (in Chinese)
    [14] 沈钰, 马丙辉, 李东升. 基于有限元的丝网张力计受力分析[J]. 中国计量学院学报, 2012, 23(3): 284-288

    SHEN Y, MA B H, LI D S. Force analysis of silk tension meters based on finite element method[J]. Journal of China University of Metrology, 2012, 23(3): 284-288 (in Chinese)
    [15] 蔡奎, 丁华锋, 李大峰, 等. 万吨航空铝合金张力拉伸机结构强度分析与试验[J]. 机械设计与制造, 2013(6): 112-115 doi: 10.3969/j.issn.1001-3997.2013.06.035

    CAI K, DING H F, LI D F, et al. Ten thousand tons of aviation aluminum alloy tension machine structure strength analysis and test[J]. Machinery design & manufacture, 2013(6): 112-115 (in Chinese) doi: 10.3969/j.issn.1001-3997.2013.06.035
    [16] FERNANDO E A S K, JAYAWARDANA T S S. Designing of tension control device to minimize tension variation across weaver's beam[J]. Research Journal of Textile and Apparel, 2015, 19(3): 23-31 doi: 10.1108/RJTA-19-03-2015-B004
    [17] 史作飞. 模拟弹与水面舰船防护甲板的对抗研究[D]. 南京理工大学, 2014

    SHI Z F. Research on simulated missile against the ship deck[D]. Nanjing: Nanjing University of Science and Technology, 2014 (in Chinese)
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  85
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 网络出版日期:  2021-04-25
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回