留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

OpenSim环境下人体下肢行走生物力学特性研究

郭超 何育民 孙朝阳 汪朝晖

郭超,何育民,孙朝阳, 等. OpenSim环境下人体下肢行走生物力学特性研究[J]. 机械科学与技术,2021,40(9):1355-1360 doi: 10.13433/j.cnki.1003-8728.20200225
引用本文: 郭超,何育民,孙朝阳, 等. OpenSim环境下人体下肢行走生物力学特性研究[J]. 机械科学与技术,2021,40(9):1355-1360 doi: 10.13433/j.cnki.1003-8728.20200225
GUO Chao, HE Yumin, SUN Zhaoyang, WANG Zhaohui. Exploring Biomechanical Characteristics of Human Lower Limb Walk using the OpenSim Software[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1355-1360. doi: 10.13433/j.cnki.1003-8728.20200225
Citation: GUO Chao, HE Yumin, SUN Zhaoyang, WANG Zhaohui. Exploring Biomechanical Characteristics of Human Lower Limb Walk using the OpenSim Software[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1355-1360. doi: 10.13433/j.cnki.1003-8728.20200225

OpenSim环境下人体下肢行走生物力学特性研究

doi: 10.13433/j.cnki.1003-8728.20200225
基金项目: 陕西省自然科学基础研究计划项目(2014JM7269)
详细信息
    作者简介:

    郭超(1994−),硕士研究生,研究方向为下肢外骨骼的设计与研究,gcjx7811735@163.com

    通讯作者:

    何育民,副教授,博士,he_yumin@163.com

  • 中图分类号: G804.66

Exploring Biomechanical Characteristics of Human Lower Limb Walk using the OpenSim Software

  • 摘要: 为了分析人体以不同速度和不同负重行走工况下的下肢生物力学特性,基于生物力学分析软件OpenSim建立一种人体下肢肌肉骨骼模型。利用逆向动力学,以地面支反力和运动控制点坐标为驱动,完成了人体以不同速度和负重工况下的步态行走仿真。得到人体以相同速度不同负重和相同负重不同速度行走工况下,踝关节、膝关节和髋关节的力矩变化曲线,分析了行走速度和负重与关节力矩之间的变化关系,得出行走速度和负重与关节力矩的变化呈正相关关系;给出了比目鱼肌、腓肠肌和胫骨前肌的肌肉活性变化曲线,讨论了行走速度和负重与肌肉活性之间的联系,得出肌肉活性随着行走速度和负重的增加而增加。
  • 图  1  人体下肢肌肉骨骼模型

    图  2  步态周期划分图

    图  3  不同速度工况下的关节力矩曲线图

    图  4  不同行走速度工况下肌肉活性曲线图

    图  5  不同负重工况下的关节力矩曲线图

    图  6  不同负重工况下的肌肉活性曲线图

    表  1  人体下肢尺寸

    部位名称质量/kg长度/m
    髋关节9.760.177
    大腿(右)7.020.51
    大腿(左)7.020.51
    小腿(右)3.290.62
    小腿(左)3.290.62
    右脚0.740.28
    左脚0.740.28
    下载: 导出CSV
  • [1] 石俊, 姜寿山, 张欣, 等. 人体步态研究与仿真的现状和展望[J]. 系统仿真学报, 2006, 18(10): 2703-2708, 2711 doi: 10.3969/j.issn.1004-731X.2006.10.002

    SHI J, JIANG S S, ZHANG X, et al. Status quo and trend of research and simulation on human-gait[J]. Journal of System Simulation, 2006, 18(10): 2703-2708, 2711 (in Chinese) doi: 10.3969/j.issn.1004-731X.2006.10.002
    [2] TRINLER U, SCHWAMEDER H, BAKER R, et al. Muscle force estimation in clinical gait analysis using AnyBody and OpenSim[J]. Journal of Biomechanics, 2019, 86: 55-63 doi: 10.1016/j.jbiomech.2019.01.045
    [3] REINBOLT J A, SETH A, DELP S L. Simulation of human movement: applications using OpenSim[J]. Procedia IUTAM, 2011, 2: 186-198 doi: 10.1016/j.piutam.2011.04.019
    [4] SETH A, SHERMAN M, REINBOLT J A, et al. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange[J]. Procedia IUTAM, 2011, 2: 212-232 doi: 10.1016/j.piutam.2011.04.021
    [5] MENTIPLAY B F, BANKY M, CLARK R A, et al. Lower limb angular velocity during walking at various speeds[J]. Gait & Posture, 2018, 65: 190-196
    [6] LERNER Z F, HAIGHT D J, DEMERS M S, et al. The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling[J]. Journal of Applied Biomechanics, 2014, 30(2): 197-205 doi: 10.1123/jab.2012-0206
    [7] LENTON G K, DOYLE T L A, LLOYD D G, et al. Lower-limb joint work and power are modulated during load carriage based on load configuration and walking speed[J]. Journal of Biomechanics, 2019, 83: 174-180 doi: 10.1016/j.jbiomech.2018.11.036
    [8] 李琳杰, 成万祥. 基于OpenSim技术的跨栏跟腱仿真分析[J]. 天津体育学院学报, 2013, 28(6): 502-507 doi: 10.3969/j.issn.1005-0000.2013.06.009

    LI L J, CHENG W X. Biomechanical simulation of Achilles tendon during hurdling based on OpenSim technique[J]. Journal of TUS, 2013, 28(6): 502-507 (in Chinese) doi: 10.3969/j.issn.1005-0000.2013.06.009
    [9] 詹晓彤, 陈强, 李志勇. 基于OpenSim的腰部肌骨系统在体前屈状态下生物力学分析[J]. 医用生物力学, 2019, 34(1): 27-34

    ZHAN X T, CHEN Q, LI Z Y. OpenSim-based biomechanical analysis of lumbar musculoskeletal system under forward flexion[J]. Journal of Medical Biomechanics, 2019, 34(1): 27-34 (in Chinese)
    [10] 穆雪莲. 基于OpenSim对短跑起跑后第一步下肢肌肉工作特点的研究[D]. 北京: 北京体育大学, 2019.

    MU X L. Research on the characteristics of lower limb muscles during the first stance phase in sprinting based on OpenSim[D]. Beijing: Beijing Sport University, 2019 (in Chinese).
    [11] 徐欢欢, 何育民, 孙朝阳, 等. AnyBody环境下人体步态的逆向动力学研究[J]. 机械科学与技术, 2019, 38(12): 1819-1824

    XU H H, HE Y M, SUN Z Y, et al. Research of reverse dynamics of human gait via AnyBody technology[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1819-1824 (in Chinese)
    [12] 韩亚丽, 王兴松. 人体行走下肢生物力学研究[J]. 中国科学: 技术科学, 2011, 54(4): 983-991 doi: 10.1007/s11431-011-4318-z

    HAN Y L, WANG X S. The biomechanical study of lower limb during human walking[J]. Science China Technological Sciences, 2011, 54(4): 983-991 (in Chinese) doi: 10.1007/s11431-011-4318-z
    [13] OUCHIDA, MISAKI, SYLVESTER, ADAM D, et al. Using musculoskeletal simulations to model the cost of locomotion: the OpenSim experiment[J]. American Journal of Physical Anthropology, 2012, 54: 230
    [14] RASMUSSEN J, DAMSGAARD M, VOIGT M. Muscle recruitment by the min/max criterion-a comparative numerical study[J]. Journal of Biomechanics, 2001, 34(3): 409-415 doi: 10.1016/S0021-9290(00)00191-3
    [15] 邵水金, 汪建民, 李新华. 正常人体解剖学[M]. 3版. 北京: 中国中医药出版社, 2012.

    SHAO S J, WANG J M, LI X H. Human anatomy[M]. 3rd ed. Beijing: China Press of Traditional Chinese Medicine, 2012 (in Chinese)
    [16] 刘书朋, 司文, 严壮志, 等. 基于AnyBodyTM技术的人体运动建模方法[J]. 生物医学工程学进展, 2010, 31(3): 131-134 doi: 10.3969/j.issn.1674-1242.2010.03.002

    LIU S P, SI W, YAN Z Z, et al. The human motions modeling and simulation based on anybody technology[J]. Progress in Biomedical Engineering, 2010, 31(3): 131-134 (in Chinese) doi: 10.3969/j.issn.1674-1242.2010.03.002
    [17] ZAJAC F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[J]. Critical Reviews in Biomedical Engineering, 1989, 17(4): 359-411
    [18] RASMUSSEN J, TØRHOLM S, DE ZEE M. Computational analysis of the influence of seat pan inclination and friction on muscle activity and spinal joint forces[J]. International Journal of Industrial Ergonomics, 2009, 39(1): 52-57 doi: 10.1016/j.ergon.2008.07.008
    [19] 国家技术监督局. GB 10000-1988 中国成年人人体尺寸[S]. 北京: 中国标准出版社, 1989: 12.

    State Bureau of Technical Supervision. GB 10000-1988 Human dimensions of Chinese adults[S]. Beijing: China Standard Press, 1989: 12 (in Chinese).
    [20] ALAMOUDI M, TRAVASCIO F, ONAR-THOMAS A, et al. The effects of different carrying methods on locomotion stability, gait spatio-temporal parameters and spinal stresses[J]. International Journal of Industrial Ergonomics, 2018, 67: 81-88 doi: 10.1016/j.ergon.2018.04.012
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  224
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回