留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主动悬架的二阶滑模容错控制研究

孙晋伟 刘秋 顾亮

孙晋伟,刘秋,顾亮. 主动悬架的二阶滑模容错控制研究[J]. 机械科学与技术,2021,40(0):1-8 doi: 10.13433/j.cnki.1003-8728.20200219
引用本文: 孙晋伟,刘秋,顾亮. 主动悬架的二阶滑模容错控制研究[J]. 机械科学与技术,2021,40(0):1-8 doi: 10.13433/j.cnki.1003-8728.20200219
SUN Jinwei, LIU Qiu, GU Liang. Second Order Sliding Mode Fault Tolerant Control of Active Suspension Systems[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20200219
Citation: SUN Jinwei, LIU Qiu, GU Liang. Second Order Sliding Mode Fault Tolerant Control of Active Suspension Systems[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20200219

主动悬架的二阶滑模容错控制研究

doi: 10.13433/j.cnki.1003-8728.20200219
基金项目: 国家自然科学基金项目(U1564210)
详细信息
    作者简介:

    孙晋伟(1987−),讲师,博士,主要研究方向为车辆动力学,主动控制

    顾亮(1958-),教授,博士,guliangbit@163.com

  • 中图分类号: TH113

Second Order Sliding Mode Fault Tolerant Control of Active Suspension Systems

  • 摘要: 针对主动悬架执行器故障,基于终端滑模和二阶超螺旋滑模算法,研究不同路面激励及不同执行器故障下悬架系统特性,实现主动悬架容错控制的目的。首先建立了七自由度悬架模型和非线性液压执行器模型,将悬架系统分为簧载质量运动的内部动力学和含有执行器子系统的外部动力学;然后引入非奇异快速终端滑模控制器来抑制簧载质量运动加速度,并利用超螺旋滑模控制器来跟踪终端滑模产生的期望控制力,使主动悬架在外部干扰及执行器故障工况下仍能保持期望性能;最后利用Lyapunov方程证明了超螺旋滑模控制器的稳定性。仿真结果表明:控制算法能有效提升车辆振动系统的性能;相比于传统的H控制,二阶滑模能更有效地提升系统的可靠性。
  • 图  1  悬架动力学模型

    图  2  基于二阶滑模的容错控制流程图

    图  3  四轮路面高程输入

    图  4  无故障时簧载质量运动响应

    图  5  无故障时悬架动行程响应

    图  6  无故障时轮胎动位移响应

    图  7  垂向加速度、悬架动行程和轮胎动位移的频域响应

    图  8  执行器故障信号

    图  9  有故障时簧载质量运动响应

    图  10  有故障时悬架动行程响应

    图  11  有故障时轮胎动位移响应

    表  1  悬架和液压执行器模型参数

    参数数值参数数值
    ms/kg 1592 kni/(N·m−1) 14600
    mui/kg 120/150 bi/(N·m·s−1) 3000
    a/m 1.18 Kti/(N·m−1) 230000
    b/m 1.7 Ps/(N·m−2) 1.034×107
    c/m 0.7875 AP 3.35×10−4
    d/m 0.7875 Cd 0.61
    Iy/(kg·m2) 2488 w/m 1.436×10−2
    Ix/(kg·m2) 614 ρ/(kg·m−3) 858
    ki/(N·m−1) 146000 α 1.19143×1013
    下载: 导出CSV

    表  2  控制器参数

    参数参数
    $ {{\gamma }_{z1}},{{\gamma }_{\theta 1}},{{\gamma }_{\varphi 1}} $ 3 $ {{\alpha }_{z}},{{\alpha }_{\theta }},{{\alpha }_{\varphi }}$ 1.5
    $ {{\gamma }_{z2}},{{\gamma }_{\theta 2}},{{\gamma }_{\varphi 2}}$ 1.667 $ {{\beta }_{z}},{{\beta }_{\theta }},{{\beta }_{\varphi }} $ 1.9
    $ {{K}_{z1}},{{K}_{\theta 1}},{{K}_{\varphi 1}}$ 0.05 $ {{\lambda }_{2i-1}} $ 0.01
    $ {{K}_{z1}},{{K}_{\theta 1}},{{K}_{\varphi 1}} $ 1 $ {{\lambda }_{2i}}$ 1
    下载: 导出CSV
  • [1] 庞辉, 王延, 刘凡. 考虑参数不确定性的主动悬架H2/H保性能控制[J]. 控制与决策, 2019, 34(3): 470-478

    PANG H, WANG Y, LIU F. H2/H guaranteed cost control for active suspensions considering parameter uncertainty[J]. Control and Decision, 2019, 34(3): 470-478 (in Chinese)
    [2] 王兴野, 张进秋, 刘义乐, 等. 一种改进的有限频域状态反馈H控制方法研究[J]. 振动与冲击, 2019, 38(5): 135-141

    WANG X Y, ZHANG J Q, LIU Y L, et al. An improved state feedback H control method within a finite frequency domain[J]. Journal of Vibration and Shock, 2019, 38(5): 135-141 (in Chinese)
    [3] MORADI M, FEKIH A. Adaptive PID-sliding-mode fault-tolerant control approach for vehicle suspension systems subject to actuator faults[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1041-1054 doi: 10.1109/TVT.2013.2282956
    [4] WEISPFENNING T. Fault detection and diagnosis of components of the vehicle vertical dynamics[J]. Meccanica, 1997, 32(5): 459-472 doi: 10.1023/A:1004212001768
    [5] KIM H, LEE H. Fault-tolerant control algorithm for a four-corner closed-loop air suspension system[J]. IEEE Transactions on industrial Electronics, 2011, 58(10): 4866-4879 doi: 10.1109/TIE.2011.2123852
    [6] 杨柳青, 陈无畏, 张荣芸, 等. 基于控制律重组的汽车半主动悬架容错控制与试验[J]. 农业机械学报, 2013, 44(10): 1-9

    YANG L Q, CHEN W W, ZHANG R Y, et al. Fault-tolerant control and experiment on vehicle semi-active suspension system based on control law reconfiguration[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 1-9 (in Chinese)
    [7] WANG R R, JING H, KARIMI H R, et al. Robust fault-tolerant H control of active suspension systems with finite-frequency constraint[J]. Mechanical Systems and Signal Processing, 2015, 62-63: 341-355 doi: 10.1016/j.ymssp.2015.01.015
    [8] LI H, GAO H, LIU H, et al. Fault-tolerant H control for active suspension vehicle systems with actuator faults[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2012, 226(3): 348-363 doi: 10.1177/0959651811418401
    [9] LIU S B, ZHOU H Y, LUO X X, et al. Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems[J]. Journal of the Franklin Institute, 2016, 353(1): 180-199 doi: 10.1016/j.jfranklin.2015.11.002
    [10] WANG Z F, DONG M M, GU L, et al. Influence of road excitation and steering wheel input on vehicle system dynamic responses[J]. Applied Sciences, 2017, 7(6): 570 doi: 10.3390/app7060570
    [11] YAO J Y, JIAO Z X, MA D W. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6285-6293 doi: 10.1109/TIE.2014.2304912
    [12] RATH J J, DEFOORT M, KARIMI H R, et al. Output feedback active suspension control with higher order terminal sliding mode[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1392-1403 doi: 10.1109/TIE.2016.2611587
    [13] 秦也辰. 基于路面识别的车辆半主动悬架控制研究[D]. 北京: 北京理工大学, 2016.

    QIN Y C. Research on vehicle semi-active suspension system based on road estimation[D]. Beijing: Beijing Institute of Technology, 2016 (in Chinese).
    [14] QIN Y C, ZHAO F, WANG Z F, et al. Comprehensive analysis for influence of controllable damper time delay on semi-active suspension control strategies[J]. Journal of Vibration and Acoustics, 2017, 139(3): 031006 doi: 10.1115/1.4035700
    [15] 任宏斌, 陈思忠, 吴志成, 等. 车辆左右车轮路面不平度的时域再现研究[J]. 北京理工大学学报, 2013, 33(3): 257-259, 306

    REN H B, CHEN S Z, WU Z C, et al. Time domain excitation model of random road profile for left and right wheels[J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 257-259, 306 (in Chinese)
    [16] YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879 doi: 10.1002/rnc.1666
    [17] CHALANGA A, KAMAL S, FRIDMAN L M, et al. Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3677-3685 doi: 10.1109/TIE.2016.2523913
    [18] MORENO J A, OSORIO M. Strict lyapunov functions for the super-twisting algorithm[J]. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040 doi: 10.1109/TAC.2012.2186179
    [19] MORENO J A, OSORIO M. A Lyapunov approach to second-order sliding mode controllers and observers[C]//Proceedings of the 2008 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008: 2856-2861.
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 网络出版日期:  2021-05-28

目录

    /

    返回文章
    返回