留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的交互式卡尔曼滤波对雷达数据处理技术研究

刘全周 贾鹏飞 李占旗 王启配 王述勇

刘全周,贾鹏飞,李占旗, 等. 改进的交互式卡尔曼滤波对雷达数据处理技术研究[J]. 机械科学与技术,2020,39(8):1248-1255 doi: 10.13433/j.cnki.1003-8728.20200111
引用本文: 刘全周,贾鹏飞,李占旗, 等. 改进的交互式卡尔曼滤波对雷达数据处理技术研究[J]. 机械科学与技术,2020,39(8):1248-1255 doi: 10.13433/j.cnki.1003-8728.20200111
Liu Quanzhou, Jia Pengfei, Li Zhanqi, Wang Qipei, Wang Shuyong. Research on Vehicle Radar Data Processing with Improved Interactive Kalman Filter[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20200111
Citation: Liu Quanzhou, Jia Pengfei, Li Zhanqi, Wang Qipei, Wang Shuyong. Research on Vehicle Radar Data Processing with Improved Interactive Kalman Filter[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20200111

改进的交互式卡尔曼滤波对雷达数据处理技术研究

doi: 10.13433/j.cnki.1003-8728.20200111
基金项目: 天津市科技计划项目(17YDLJGX00020)资助
详细信息
    作者简介:

    刘全周(1977−),高级工程师,硕士,liuquanzhou@catarc.ac.cn

  • 中图分类号: U461

Research on Vehicle Radar Data Processing with Improved Interactive Kalman Filter

  • 摘要: 为了减少车载毫米波雷达数据中的噪声影响,本文采用了改进的交互式卡尔曼滤波算法对采集数据进行了处理,得到了目标运动状态的最优值。依据目标车辆的运行轨迹构建了运动状态方程,确定了不同状态下的状态矩阵和观测矩阵,同时设计了交互式多模型滤波器,借助于dSPACE场景仿真软件建立了虚拟交通场景,利用硬件在环技术实现了运动目标的数据采集,分析计算了雷达数据噪声,在滤波过程中,利用遗传算法对过程噪声和量测噪声进行在线优化,得到噪声的最优组合。通过激光雷达对目标的探测结果对算法的滤波性能进行了验证,滤波算法求得的数据平均误差小于0.1 m,对数据的噪声起到一定的抑制作用,提高了对目标车辆的定位与追踪能力。
  • 图  1  目标跟踪原理

    图  2  交互式卡尔曼滤波算法流程

    图  3  改进之后的卡尔曼滤波算法流程图

    图  4  虚拟传感器模型

    图  5  目标数据采集模型

    图  6  雷达模拟器

    图  7  探测目标信息采集

    图  8  距离误差曲线图

    图  9  速度误差曲线图

    图  10  t = 20 s时遗传算法的优化结果图

    图  11  改进的交互式卡尔曼滤波对目标距离的跟踪曲线

    图  12  改进的交互式卡尔曼滤波概率曲线

    图  13  对目标的局部跟踪曲线

    图  14  激光雷达数据采集图

    图  15  两种算法误差对比图

    图  16  距离跟踪误差曲线

    表  1  雷达参数表

    最小探测
    距离/m
    最大探测
    距离/m
    探测误
    差/m
    水平探测
    范围/(°)
    俯仰探测
    范围/(°)
    1150$ \pm 0.5$$ \pm 20$$ \pm 4.5$
    下载: 导出CSV
  • [1] Quiroz A E N, Worms J. Towards a full-duplex CW radar: development of a reflected power canceller in digital domain[C]//Proceedings of the 6th International Conference on Telecommunications and Remote Sensing. Delft, Netherlands: ACM, 2017: 21-26
    [2] Caris M, Stanko S, Johannes W, et al. Detection and tracking of Micro Aerial Vehicles with millimeter wave radar[C]//2016 European Radar Conference (EuRAD). London: IEEE, 2016: 406-408
    [3] 李金奎. 雷达机动目标跟踪关键技术的研究[D]. 辽宁大连: 大连海事大学, 2018

    Li J K. Research on key technology of radar maneuvering target tracking[D]. Liaoning Dalian: Dalian Maritime University, 2018 (in Chinese)
    [4] 常娟, 申晓红, 钱伟, 等. 一种基于压缩感知的高精度目标跟踪算法[J]. 科学技术与工程, 2019, 19(2): 101-105 doi: 10.3969/j.issn.1671-1815.2019.02.018

    Chang J, Shen X H, Qian W, et al. An algorithm of target tracking with high accuracy based on compressed sensing[J]. Science Technology and Engineering, 2019, 19(2): 101-105 (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.02.018
    [5] 郭应时, 王畅, 张亚岐. 噪声方差对卡尔曼滤波结果影响分析[J]. 计算机工程与设计, 2014, 35(2): 641-645 doi: 10.3969/j.issn.1000-7024.2014.02.054

    Guo Y S, Wang C, Zhang Y Q. Analysis of noise variance' s effect on Kalman filter result[J]. Computer Engineering and Design, 2014, 35(2): 641-645 (in Chinese) doi: 10.3969/j.issn.1000-7024.2014.02.054
    [6] 孙寿宇, 宫淑丽. 基于交互式多模型扩展维特比容积卡尔曼滤波机场场面运动目标跟踪[J]. 科学技术与工程, 2019, 19(18): 340-345 doi: 10.3969/j.issn.1671-1815.2019.18.052

    Sun S Y, Gong S L. Maneuvering target tracking on airport surface based on interacting multiple model extended viterbi cubature Kalman filter algorithm[J]. Science Technology and Engineering, 2019, 19(18): 340-345 (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.18.052
    [7] Xu Q M, Li X, Li B, et al. An interacting multiple mode6-based two-stage Kalman filter for vehicle position[J]. Journal of Southeast University, 2017, 33(2): 177-181
    [8] 裴忠钎. 基于交互式多模型快速数据关联的多机动目标跟踪算法研究[D]. 太原: 太原理工大学, 2017

    Pei Z Q. Research on multi maneuvering target tracking algorithm based on interacting multiple models fast data association[D]. Taiyuan: Taiyuan University of Technology, 2017 (in Chinese)
    [9] Wang C C, Wu P L, Deng Y H. Modified iterated square-root cubature Kalman filter for non-cooperative space target tracking[J]. International Journal of Engineering and Applied Sciences, 2015, 2(11): 73-77
    [10] Adibifard M, Talebkeikhah M, Sharifi M, et al. Iterative ensemble Kalman filter and genetic algorithm for automatic reconstruction of relative permeability curves in the subsurface multi-phase flow[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107264 doi: 10.1016/j.petrol.2020.107264
    [11] 张家旭, 李静. 基于交互式多模型和容积卡尔曼滤波的汽车状态估计[J]. 汽车工程, 2017, 39(9): 977-983

    Zhang J X, Li J. Vehicle state estimation based on interactive multiple model and cubature Kalman filter[J]. Automotive Engineering, 2017, 39(9): 977-983 (in Chinese)
    [12] 许晶晶, 郭培源, 董小栋, 等. 改进互补滤波在六旋翼飞行器中的应用[J]. 传感器与微系统, 2018, 37(1): 157-160

    Xu J J, Guo P Y, Dong X D, et al. Application of improved complementary filtering in six-rotor aircraft[J]. Transducer and Microsystem Technologies, 2018, 37(1): 157-160 (in Chinese)
    [13] 王中立, 牛颖. 基于多传感器信息融合的机器人障碍物检测[J]. 中国测试, 2017, 43(8): 80-85

    Wang Z L, Niu Y. Obstacle detection of robot based on multi-sensor information fusion[J]. China Measurement & Test, 2017, 43(8): 80-85 (in Chinese)
    [14] 刘志强, 张光林, 邱惠敏. 基于多传感器信息融合的目标追踪方法研究[J]. 重庆理工大学学报, 2020, 34(9): 40-46

    Liu Z Q, Zhang G L, Qiu H M. Research on target tracking method based on multi-sensor fusion[J]. Journal of Chongqing University of Technology, 2020, 34(9): 40-46 (in Chinese)
    [15] Bahadori N, Namvar N, Kelley B, et al. Device-to-device communications in millimeter wave band: impact of beam alignment error[J]. arXiv, 2019, 12(42): 110-115
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-11
  • 网络出版日期:  2020-12-29

目录

    /

    返回文章
    返回