留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乘用车悬架静强度与疲劳载荷研究

邓小强 胡浩炬 余家皓 郭绍良

邓小强,胡浩炬,余家皓, 等. 乘用车悬架静强度与疲劳载荷研究[J]. 机械科学与技术,2021,40(4):556-561 doi: 10.13433/j.cnki.1003-8728.20200100
引用本文: 邓小强,胡浩炬,余家皓, 等. 乘用车悬架静强度与疲劳载荷研究[J]. 机械科学与技术,2021,40(4):556-561 doi: 10.13433/j.cnki.1003-8728.20200100
DENG Xiaoqiang, HU Haoju, YU Jiahao, GUO Shaoliang. Study on Static Strength and Fatigue Load of Passenger Vehicle Suspension System[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 556-561. doi: 10.13433/j.cnki.1003-8728.20200100
Citation: DENG Xiaoqiang, HU Haoju, YU Jiahao, GUO Shaoliang. Study on Static Strength and Fatigue Load of Passenger Vehicle Suspension System[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 556-561. doi: 10.13433/j.cnki.1003-8728.20200100

乘用车悬架静强度与疲劳载荷研究

doi: 10.13433/j.cnki.1003-8728.20200100
详细信息
    作者简介:

    邓小强(1985−),工程师,硕士,研究方向为汽车底盘悬架及结构CAE,dengxiaoqiang@gacrnd.com

  • 中图分类号: U463.1

Study on Static Strength and Fatigue Load of Passenger Vehicle Suspension System

  • 摘要: 为了快速获得平台悬架静强度与疲劳载荷,本文依据某A级平台5款量产车型试验场道路载荷数据,以前麦弗逊悬架为研究对象,先对轮心载荷幅值进行统计分析,根据应力-强度干涉模型,得到该平台前悬架的强度载荷边界,及其与车辆满载轮荷的G载荷系数。再通过研究5款车型车轮轮心疲劳伪损伤与轮荷的关联关系,得到该平台悬架的疲劳载荷。此方法可快速获得同平台悬架静强度与疲劳载荷,省去实车道路谱采集并提升了工作效率。
  • 图  1  SUV-1车型不同工况左前轮载荷信号

    图  2  各车型功率谱密度分布

    图  3  应力-强度干涉模型

    图  4  纵向、侧向、垂向伪损伤与轮荷的关系

    表  1  某车型平台车型及前悬轮荷

    序号车型前悬轮荷(满载) / kg
    1 Car 460
    2 SUV-1 497
    3 MPV-1 540
    4 SUV-2 563
    5 SUV-3 610
    下载: 导出CSV

    表  2  试验场道路工况及循环次数

    序号工况描述循环次数序号工况描述循环次数
    1 搓板路 N1 9 标准坡 N9
    2 扭曲路 N2 10 卵石路 N10
    3 制动 N3 11 共振路 N11
    4 坑洼路 N4 12 石块路 N12
    5 路缘冲击路 N5 13 砂石路 N13
    6 长坡路 N6 14 凸块路 N14
    7 铁轨 N7 15 绕八字 N15
    8 减速带 N8 16 三点掉头 N16
    下载: 导出CSV

    表  3  SUV-1试验场道路工况幅值范围信息

    序号工况描述纵向/N侧向/N垂向/N
    1 搓板路 −2943~1812 −1360~1586 530~8876
    2 扭曲路 −1563~842 −781.3~1360 987~7484
    3 制动 −1558~6968 −1627~1452 −128~7413
    4 坑洼路 −3097~4647 −1150~1964 −440~111145
    5 路缘冲击路 −1657~756 −938~1971 −618~9604
    6 长坡路 −1552~887 −1393~778 1916~8244
    7 铁轨 −812~363 −16~770 4284~5047
    8 减速带 −1955~1319 −479~417 3017~5435
    9 标准坡 −3858~3388 −1294~1999 1161~7468
    10 卵石路 −2588~3211 −2645~2950 353~8257
    11 共振路 −3173~2811 −947~1226 94~10014
    12 石块路 −3144~2951 −2084~2844 −212~9947
    13 砂石路 −2767~1241 −1169~2047 340~8134
    14 凸块路 −3180~3097 −1422~2806 604~7162
    15 绕八字 −2073~699 −2143~5423 474~7473
    16 三点掉头 −2747~1866 −2855~3571 2211~6443
    下载: 导出CSV

    表  4  各车型试验场道路谱纵向、侧向、垂向幅值范围信息 N

    工况CarSUV-1MPVSUV-2SUV-3
    均值最大最小均值最大最小均值最大最小均值最大最小均值最大最小
    纵向 制动 −315 5677 −2444 −124 6968 −1558 −424 7157 −2979 −446 7335 −3548 −232 9433 −3013
    坑洼路 −47 2438 −1486 −206 4647 −3097 −675 6117 −3114 −635 5250 −2704 −695 5480 −3271
    标准坡 −231 2712 −3015 −295 3388 −3858 −633 4815 −5348 −317 3790 −3418 −218 4653 −4595
    共振路 −224 3055 −2676 −625 2811 −3173 −207 3296 −3143 −442 2933 −4061 −98 3984 −3766
    石块路 −257 3503 −3202 −370 2951 −3144 −295 3695 −3389 −418 3502 −3183 −259 4663 −3170
    侧向 凸块路 −269 2934 −3412 −414 3097 −3180 −314 3427 −4220 −413 2213 −2832 −287 3198 −3254
    卵石路 305 3456 −2307 −181 2950 −2645 247 2685 −2083 64 3808 −2539 230 4570 −3743
    三点掉头 454 3960 −2965 498 3571 −2855 768 3244 −1867 187 2689 −3097 352 4152 −3529
    绕八字 1073 5230 −2593 952 5423 −2143 984 6226 −2085 −12 5305 −3051 308 7508 −3399
    石块路 240 3378 −1710 60 2844 −2084 354 2858 −1870 −171 2840 −2621 258 3787 −2110
    垂向 坑洼路 4262 10059 −341 4147 11145 −440 5092 12535 −616 5137 13221 −212 5475 14763 −602
    路缘冲击 4408 9287 −367 4498 9604 −618 5454 11308 −877 5421 10603 −674 5590 13232 −642
    石块路 4372 9763 −40 4209 9947 −212 5078 10811 −261 5169 11985 −144 5381 12193 −490
    共振路 4352 9769 67 4175 10014 94 5038 11443 312 5166 11557 354 5430 12390 23
    下载: 导出CSV

    表  5  SUV-1车型垂向载荷幅值统计信息 N

    类别组1组2组3组4组5平均值μ标准差σ
    垂向Z−367−405−280−351−332−347.041.3
    垂向Z+111451251010901110451070511261.2641.7
    下载: 导出CSV

    表  6  各车型G载荷系数范围

    方向CarSUV-1MPVSUV-2SUV-3
    MinMaxMinMaxMinMaxMinMaxMinMax
    纵向 −0.7 1.4 −0.8 1.4 −0.8 1.3 −0.7 1.3 −0.8 1.5
    侧向 −0.6 1.1 −0.6 1.0 −0.4 1.1 −0.5 0.9 −0.6 1.2
    垂向 −0.09 2.5 −0.09 2.5 −0.11 2.4 −0.12 2.4 −0.11 2.4
    下载: 导出CSV

    表  7  各车型主要方向伪损伤

    方向CarSUV-1MPVSUV-2SUV-3
    纵向 1.18 1.21 2.10 1.92 2.90
    侧向 0.11 0.17 0.20 0.27 0.43
    垂向 12.44 13.11 26.50 25.70 37.54
    下载: 导出CSV
  • [1] 宋自力, 刘俊红. 基于道路谱的汽车底盘静强度分析[J]. 计算机辅助工程, 2015, 24(5): 16-21

    SONG Z L, LIU J H. Static strength analysis on automobile chassis based on road spectrum[J]. Computer Aided Engineering, 2015, 24(5): 16-21 (in Chinese)
    [2] 方剑光, 高云凯, 徐成民. 车身疲劳载荷谱的位移反求法[J]. 同济大学学报, 2013, 41(6): 895-899, 903 doi: 10.3969/j.issn.0253-374x.2013.06.015

    FANG J G, GAO Y K, XU C M. Displacement back-calculation of body fatigue loading spectrum[J]. Journal of Tongji University , 2013, 41(6): 895-899, 903 (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.06.015
    [3] CIANETTI F. Development of a modal approach for the fatigue damage evaluation of mechanical components subjected to random loads[J]. SDHM Structural Durability and Health Monitoring, 2012, 8(1): 1-29
    [4] TAKEDA N, NARUSE T. Accurate prediction of fatigue life under random loading[J]. Journal of the Society of Materials Science, Japan, 2012, 61(10): 853-859 doi: 10.2472/jsms.61.853
    [5] BRACCESI C, CIANETTI F, LORI G, et al. Random multiaxial fatigue: A comparative analysis among selected frequency and time domain fatigue evaluation methods[J]. International Journal of Fatigue, 2015, 74: 107-118 doi: 10.1016/j.ijfatigue.2015.01.003
    [6] 丁晓明, 韦进光, 肖甫. 汽车前悬结构件耐久性分析及优化[J]. 机械科学与技术, 2017, 36(9): 1381-1387

    DING X M, WEI J G, XIAO F. Durability analysis and optimization of car front suspension structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1381-1387 (in Chinese)
    [7] 周泽, 李光耀, 唐传, 等. 基于耐久性虚拟试验的车身结构疲劳分析[J]. 汽车工程, 2014, 36(3): 362-367 doi: 10.3969/j.issn.1000-680X.2014.03.020

    ZHOU Z, LI G Y, TANG C, et al. The fatigue analysis of car body structure based on virtual durability test[J]. Automotive Engineering, 2014, 36(3): 362-367 (in Chinese) doi: 10.3969/j.issn.1000-680X.2014.03.020
    [8] 吴涛, 茆汉湖, 戴轶. 基于路谱频域的车身疲劳分析[J]. 计算机辅助工程, 2012, 21(2): 50-52, 83 doi: 10.3969/j.issn.1006-0871.2012.02.012

    WU T, MAO H H, DAI Y. Vehicle body fatigue analysis based on frequency domain of road spectrum[J]. Computer Aided Engineering, 2012, 21(2): 50-52, 83 (in Chinese) doi: 10.3969/j.issn.1006-0871.2012.02.012
    [9] 吴建国, 周鋐, 陈栋华, 等. 目标用户道路谱与试验场道路谱的载荷当量等效模拟研究[J]. 汽车技术, 2007(7): 21-24 doi: 10.3969/j.issn.1000-3703.2007.07.006

    WU J G, ZHOU H, CHEN D H, et al. Study on road equivalent simulation based on loading spectrums in customer road and proving ground[J]. Automobile Technology, 2007(7): 21-24 (in Chinese) doi: 10.3969/j.issn.1000-3703.2007.07.006
    [10] 赵少汴. 抗疲劳设计手册[M]. 2版. 北京: 机械工业出版社, 2015.

    ZHANG S B. Kangpilao Sheji Shouce[M]. 2nd ed. Beijing: China Machine Press, 2015 (in Chinese).
    [11] 曹树森, 邓斌, 马素君, 等. 接触线风振疲劳可靠性分析[J]. 机械科学与技术, 2011, 30(10): 1664-1668

    CAO S S, DENG B, MA S J, et al. Fatigue reliability analysis of contact wire under wind load[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(10): 1664-1668 (in Chinese)
    [12] 田军, 李强. 改进的雨流法实时计数模型[J]. 北京交通大学学报, 2009, 33(1): 28-31 doi: 10.3969/j.issn.1673-0291.2009.01.007

    TIAN J, LI Q. Improved model of rain-flow real-time counting method[J]. Journal of Beijing Jiaotong University, 2009, 33(1): 28-31 (in Chinese) doi: 10.3969/j.issn.1673-0291.2009.01.007
    [13] NCODE International Ltd. Design life Manual[G]. 2010.
    [14] 韩愈, 张元勤, 石利敏, 等. 基于用户车辆伪损伤分布的两种强化路特性对比[J]. 汽车技术, 2013(8): 39-45 doi: 10.3969/j.issn.1000-3703.2013.08.011

    HAN Y, ZHANG Y Q, SHI L M, et al. Comparison of two rough roads based on vehicle damage distribution of users[J]. Automobile Technology, 2013(8): 39-45 (in Chinese) doi: 10.3969/j.issn.1000-3703.2013.08.011
    [15] 朱剑锋, 张君媛, 陈箫凯, 等. 汽车控制臂台架疲劳试验载荷块编制[J]. 吉林大学学报, 2017, 47(5): 1367-1372

    ZHU J F, ZHANG J Y, CHEN X K, et al. Block cycle load compilation for automotive control arm fatigue bench test[J]. Journal of Jilin University , 2017, 47(5): 1367-1372 (in Chinese)
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  39
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回