留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有末端质量的竖直梁压电俘能器参数共振及其特性研究

邹政 谢进 马戈 汪灿

邹政,谢进,马戈, 等. 含有末端质量的竖直梁压电俘能器参数共振及其特性研究[J]. 机械科学与技术,2021,40(4):508-517 doi: 10.13433/j.cnki.1003-8728.20200096
引用本文: 邹政,谢进,马戈, 等. 含有末端质量的竖直梁压电俘能器参数共振及其特性研究[J]. 机械科学与技术,2021,40(4):508-517 doi: 10.13433/j.cnki.1003-8728.20200096
ZOU Zheng, XIE Jin, MA Ge, WANG Can. Study on Parametric Resonance of Vertical Cantilevered Piezoelectric Energy Harvester with End Mass and Its Characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 508-517. doi: 10.13433/j.cnki.1003-8728.20200096
Citation: ZOU Zheng, XIE Jin, MA Ge, WANG Can. Study on Parametric Resonance of Vertical Cantilevered Piezoelectric Energy Harvester with End Mass and Its Characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 508-517. doi: 10.13433/j.cnki.1003-8728.20200096

含有末端质量的竖直梁压电俘能器参数共振及其特性研究

doi: 10.13433/j.cnki.1003-8728.20200096
基金项目: 国家自然科学基金项目(51575457)
详细信息
    作者简介:

    邹政(1993−),硕士研究生,研究方向为压电俘能器及非线性动力学的研究,861134395@qq.com

    通讯作者:

    谢进,教授,博士生导师,xj_6302@263.net

  • 中图分类号: TH113.1

Study on Parametric Resonance of Vertical Cantilevered Piezoelectric Energy Harvester with End Mass and Its Characteristics

  • 摘要: 为了改善参数共振压电俘能器的俘能特性,提出在竖直梁的自由端固结一个质量块。利用拉格朗日方程和高斯定律建立了系统的机电耦合方程,并进行了数值仿真。仿真结果表明,梁从竖直的单稳态系统转变为屈曲的双稳态系统的临界末端质量Mc为0.0509 kg。当梁的阻尼比为0.05,末端质量从0增加到Mc时,参数共振激励阈值从47.5 m/s2减小到趋向于0;当M大于Mc时,对于任何阻尼比的梁,激励阈值都为零,并且当外激励的幅值和频率使得梁处于两稳态势阱间的大幅周期运动时,俘能器才可以产生出较高的输出功率。
  • 图  1  参数激励俘能器结构示意图

    图  2  确定位置矢量的末端质量运动图

    图  3  系统的平衡点和固有频率

    图  4  末端质量对激励阈值的全局影响

    图  5  M < Mc时的激励阈值

    图  6  激励幅值小于激励阈值的时域图与相图

    图  7  激励达到激励阈值的时域图和相图

    图  8  M > Mc时的激励阈值

    图  9  系统关于激励幅值和激励频率的分岔图

    图  10  系统在不同激励幅值时的时域图和相图

    图  11  系统在不同激励频率的时域图和相图(激励幅值A = 0.3 m/s2

    表  1  俘能器仿真参数

    参数压电片
    长度$(L,{L_{{p}}})/{\rm{mm}}$20030
    宽度$({w_{{b}}},{w_{{p}}})/{\rm{mm}}$1616
    厚度$({t_{{b}}},{t_{{p}}})/{\rm{mm}}$0.40.3
    密度$\rho /{\rm{(kg}} \cdot {{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}$7165
    杨氏模量$(E,{E_{{p}}})/{\rm{GPa}}$10066
    压电常数${d_{31}}/({\rm{pC}} \cdot {{\rm{N}}^{{\rm{ - 1}}}})$−190
    介电常数${\varepsilon _{33}}/{\rm{(nF}} \cdot {{\rm{m}}^{{\rm{ - 1}}}}{\rm{)}}$13.28
    负载电阻$R/{\rm{M\Omega }}$5
    下载: 导出CSV
  • [1] 孙健, 李以贵, 刘景全, 等. 微压电式振动能量采集器的研究进展[J]. 微纳电子技术, 2009, 46(11): 673-677, 690

    SUN J, LI Y G, LIU J Q, et al. Trends of MEMS-based piezoelectric vibration energy harvesters[J]. Micronanoelectronic Technology, 2009, 46(11): 673-677, 690 (in Chinese)
    [2] KIM S G, PRIYA S, KANNO I. Piezoelectric MEMS for energy harvesting[J]. MRS Bulletin, 2012, 37(11): 1039-1050 doi: 10.1557/mrs.2012.275
    [3] 蒋树农, 郭少华, 李显方. 单压电片悬臂梁式压电俘能器效能分析[J]. 振动与冲击, 2012, 31(19): 90-94

    JIANG S N, GUO S H, LI X F. Performance analysis for a unimorph cantilever piezoelectric harvester[J]. Journal of Vibration and Shock, 2012, 31(19): 90-94 (in Chinese)
    [4] 唐刚, 刘景全, 马华安, 等. 微型压电振动能量采集器的研究进展[J]. 机械设计与研究, 2010, 26(4): 61-64, 70

    TANG G, LIU J Q, MA H A, et al. A survey on research of micro piezoelectric vibration energy harvesters[J]. Machine Design and Research, 2010, 26(4): 61-64, 70 (in Chinese)
    [5] 李金田, 文玉梅. 压电式振动能量采集装置研究进展[J]. 现代电子技术, 2011, 34(18): 184-189 doi: 10.3969/j.issn.1004-373X.2011.18.056

    LI J T, WEN Y M. A survey on research of piezoelectric vibration energy acquisition device[J]. Modern Electronics Technique, 2011, 34(18): 184-189 (in Chinese) doi: 10.3969/j.issn.1004-373X.2011.18.056
    [6] DAQAQ M F, STABLER C, QAROUSH Y, et al. Investigation of power harvesting via parametric excitations[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(5): 545-557 doi: 10.1177/1045389X08100978
    [7] ABDELKEF A, NAYFEH A H, HAJJ M R. Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters[J]. Nonlinear Dynamics, 2012, 67(2): 1147-1160 doi: 10.1007/s11071-011-0059-6
    [8] MAM K, PEIGNEY M, SIEGERT D. Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations[J]. Journal of Sound and Vibration, 2017, 389: 411-437 doi: 10.1016/j.jsv.2016.11.022
    [9] JIA Y, YAN J Z, SOGA K, et al. A parametrically excited vibration energy harvester[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(3): 278-289 doi: 10.1177/1045389X13491637
    [10] JIA Y, YAN J Z, SOGA K. Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude[J]. Smart Materials and Structures, 2014, 23(6): 065011 doi: 10.1088/0964-1726/23/6/065011
    [11] JIA Y, SESHIA A A. An auto-parametrically excited vibration energy harvester[J]. Sensors and Actuators A: Physical, 2014, 220: 69-75 doi: 10.1016/j.sna.2014.09.012
    [12] LAN C B, QIN W Y, DENG W Z. Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam[J]. Applied Physics Letters, 2015, 107(9): 093902 doi: 10.1063/1.4930073
    [13] FIROOZY P, KHADEM S E, POURKIAEE S M. Power enhancement of broadband piezoelectric energy harvesting using a proof mass and nonlinearities in curvature and inertia[J]. International Journal of Mechanical Sciences, 2017, 133: 227-239 doi: 10.1016/j.ijmecsci.2017.08.048
    [14] FRISWELL M I, ALI S F, BILGEN O, et al. Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1505-1521 doi: 10.1177/1045389X12455722
    [15] LAN C B, QIN W Y. Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester[J]. Mechanical Systems and Signal Processing, 2017, 85: 71-81 doi: 10.1016/j.ymssp.2016.07.047
    [16] ERTURK A, INMAN D J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters[J]. Journal of Vibration and Acoustics, 2008, 130(4): 041002 doi: 10.1115/1.2890402
    [17] ERTURK A, INMAN D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J]. Smart Materials and Structures, 2009, 18(2): 025009 doi: 10.1088/0964-1726/18/2/025009
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  48
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-14
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回