留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于旋转环境的磁致伸缩振动能量收集方法研究

晚冬 刘慧芳 张靖 赵强

晚冬,刘慧芳,张靖, 等. 用于旋转环境的磁致伸缩振动能量收集方法研究[J]. 机械科学与技术,2021,40(4):604-608 doi: 10.13433/j.cnki.1003-8728.20200093
引用本文: 晚冬,刘慧芳,张靖, 等. 用于旋转环境的磁致伸缩振动能量收集方法研究[J]. 机械科学与技术,2021,40(4):604-608 doi: 10.13433/j.cnki.1003-8728.20200093
WAN Dong, LIU Huifang, ZHANG Jing, ZHAO Qiang. Research on Magnetostrictive Vibration Energy Harvesting Method for Rotating Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 604-608. doi: 10.13433/j.cnki.1003-8728.20200093
Citation: WAN Dong, LIU Huifang, ZHANG Jing, ZHAO Qiang. Research on Magnetostrictive Vibration Energy Harvesting Method for Rotating Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 604-608. doi: 10.13433/j.cnki.1003-8728.20200093

用于旋转环境的磁致伸缩振动能量收集方法研究

doi: 10.13433/j.cnki.1003-8728.20200093
基金项目: 国家自然科学基金(51775354)、辽宁省高等学校创新人才支持计划(LCR2018049)、辽宁省教育厅服务地方项目(LFGD2019003)及沈阳市高层次创新人才项目(RC180061)
详细信息
    作者简介:

    晚冬(1994−),硕士研究生,研究方向为振动能量收集与发电技术,18341347663@163.com

    通讯作者:

    刘慧芳,副教授,博士,hfliu@sut.edu.cn

  • 中图分类号: TM919

Research on Magnetostrictive Vibration Energy Harvesting Method for Rotating Environment

  • 摘要: 随着无线传感器的功率消耗从mW级降到了μW级,对无线小功率设备的供电有了新的可能。本文设计并实验了一种新型的基于磁致伸缩材料(铁镓合金)的振动能量收集装置。可以应用于对低频旋转环境中存在的振动进行收集并转换为电能,工作转速范围为0 ~ 150 r/min。搭建了实验平台,进行实验分析。实验结果表明,偏置磁场摆放在最佳位置,添加5 g的自由配重块,系统可以产生最高电压为320 mV,最大功率为232 μW。
  • 图  1  磁致伸缩振动能量收集与的发电的原理示意图

    图  2  振动收集与发电装置三维模型

    图  3  整体实验平台照片

    图  4  电压随转速变化图

    图  5  偏置磁场对电压的影响变化图

    图  6  配重块摆放形式

    图  7  电压随转速变化图(有固定配重块)

    图  8  电压随转速变化图(有自由配重块)

    图  9  永磁铁摆放形式

    图  10  偏置磁场位置对电压的影响

    图  11  自由配重块质量与电压曲线图

    图  12  功率与负载的关系曲线

    图  13  示波器监测的电压波形

  • [1] 杜小振, 张龙波, 于红. 环境振动宽频采集微电源技术研究现状[J]. 微纳电子技术, 2016, 53(8): 527-534

    DU X Z, ZHANG L B, YU H. Research status of the micro power with broadband technology to harvest the ambient vibration[J]. Micronanoelectronic Technology, 2016, 53(8): 527-534 (in Chinese)
    [2] CHEN J, ZHU G, YANG W Q, et al. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor[J]. Advanced Materials, 2013, 25(42): 6094-6099 doi: 10.1002/adma.201302397
    [3] AHMAD I, KHAN F U. Multi-mode vibration based electromagnetic type micro power generator for structural health monitoring of bridges[J]. Sensors and Actuators A: Physical, 2018, 275: 154-161 doi: 10.1016/j.sna.2018.04.005
    [4] 张坤. 基于抗磁稳定悬浮的电磁式振动能量收集器研究[D]. 郑州: 郑州大学, 2019

    ZHANG K. Study on the electromagnetic vibration energy harvester based on diamagnetically stabilized levitation[D]. Zhengzhou: Zhengzhou University, 2019 (in Chinese)
    [5] SIDDIQUE A R M, MAHMUD S, VAN HEYST B. Energy conversion by ' T-shaped' cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources[J]. Energy Conversion and Management, 2017, 133: 399-410 doi: 10.1016/j.enconman.2016.10.059
    [6] TAN Y S, DONG Y, WANG X H. Review of MEMS electromagnetic vibration energy harvester[J]. Journal of Microelectromechanical Systems, 2017, 26(1): 1-16 doi: 10.1109/JMEMS.2016.2611677
    [7] 马星晨, 叶瑞丰, 张添乐, 等. 基于单极性驻极体薄膜的振动能俘获研究[J]. 物理学报, 2016, 65(17): 177701 doi: 10.7498/aps.65.177701

    MA X C, YE R F, ZHANG T L, et al. Vibration energy harvesting with uni-polar electret film[J]. Acta Physica Sinica, 2016, 65(17): 177701 (in Chinese) doi: 10.7498/aps.65.177701
    [8] 姚丙盟, 刘志平, 李文锋. 基于双稳态的振动能量收集系统的设计[J]. 中国机械工程, 2015, 26(13): 1736-1741 doi: 10.3969/j.issn.1004-132X.2015.13.006

    YAO B M, LIU Z P, LI W F. Design of vibration energy harvester based on bistability[J]. China Mechanical Engineering, 2015, 26(13): 1736-1741 (in Chinese) doi: 10.3969/j.issn.1004-132X.2015.13.006
    [9] HE X M, WEN Q, LU Z, et al. A micro-electromechanical systems based vibration energy harvester with aluminum nitride piezoelectric thin film deposited by pulsed direct-current magnetron sputtering[J]. Applied Energy, 2018, 228: 881-890 doi: 10.1016/j.apenergy.2018.07.001
    [10] 张重扬. 基于ZnO的梁型振动能量收集器力学特性及能量采集研究[D]. 哈尔滨: 哈尔滨工业大学, 2019

    ZHANG C Y. Study on mechanical properties and energy harvesting of beam-type vibration energy harvester based on zinc oxide[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
    [11] LI S S, CROVETTO A, PENG Z T, et al. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency[J]. Sensors and Actuators A: Physical, 2016, 247: 547-554 doi: 10.1016/j.sna.2016.06.033
    [12] 王佩红. 基于MEMS技术的微型电磁式振动能量采集器的研究[D]. 上海: 上海交通大学, 2010

    WANG P H. Study on the micro electromagnetic vibration energy harvester based on MEMS technology[D]. Shanghai: Shanghai Jiao Tong University, 2010 (in Chinese)
    [13] MIKI D, HONZUMI M, SUZUKI M, et al. Large-amplitude MEMS electret generator with nonlinear spring[C]//Proceedings of 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong, China: IEEE, 2010: 176-179
    [14] DAGDEVIREN C, HWANG S W, SU Y W, et al. Transient, biocompatible electronics and energy harvesters based on ZnO[J]. Small, 2013, 9(20): 3398-3404 doi: 10.1002/smll.201300146
    [15] 骆懿, 梅开煌. 基于柔性基底的压电能量收集器的设计[J]. 传感技术学报, 2017, 30(8): 1293-1298 doi: 10.3969/j.issn.1004-1699.2017.08.027

    LUO Y, MEI K H. Design of piezoelectric energy collector based on flexible substrate[J]. Chinese Journal of Sensors and Actuators, 2017, 30(8): 1293-1298 (in Chinese) doi: 10.3969/j.issn.1004-1699.2017.08.027
    [16] 陈定方, 卢全国, 梅杰, 等. Galfenol合金应用研究进展[J]. 中国机械工程, 2011, 22(11): 1370-1378

    CHEN D F, LU Q G, MEI J, et al. Research view of Galfenol alloy applications[J]. China Mechanical Engineering, 2011, 22(11): 1370-1378 (in Chinese)
    [17] 唐志峰, 吕福在, 项占琴. 影响超磁致伸缩执行器中逆效应性能的主要因素[J]. 机械工程学报, 2007, 43(12): 134-136, 143

    TANG Z F, LV F Z, XIANG Z Q. Main factors of converse effect performance in giant magnetostrictive actuator[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12): 134-136, 143 (in Chinese)
  • 加载中
图(13)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  56
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-27
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回