留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PCA-TOPSIS法在不锈钢电弧增材工艺参数优化中的应用

姜宇杰 陈菊芳 赵彩虹 李小平

姜宇杰,陈菊芳,赵彩虹, 等. PCA-TOPSIS法在不锈钢电弧增材工艺参数优化中的应用[J]. 机械科学与技术,2021,40(4):579-585 doi: 10.13433/j.cnki.1003-8728.20200086
引用本文: 姜宇杰,陈菊芳,赵彩虹, 等. PCA-TOPSIS法在不锈钢电弧增材工艺参数优化中的应用[J]. 机械科学与技术,2021,40(4):579-585 doi: 10.13433/j.cnki.1003-8728.20200086
JIANG Yujie, CHEN Jufang, ZHAO Caihong, LI Xiaoping. Application of PCA-TOPSIS Method to Optimization of Processing Parameters in Wire Arc Additive Manufacturing of Stainless Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 579-585. doi: 10.13433/j.cnki.1003-8728.20200086
Citation: JIANG Yujie, CHEN Jufang, ZHAO Caihong, LI Xiaoping. Application of PCA-TOPSIS Method to Optimization of Processing Parameters in Wire Arc Additive Manufacturing of Stainless Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 579-585. doi: 10.13433/j.cnki.1003-8728.20200086

PCA-TOPSIS法在不锈钢电弧增材工艺参数优化中的应用

doi: 10.13433/j.cnki.1003-8728.20200086
基金项目: 国家自然科学基金项目(51975264)、江苏省研究生科研与实践创新计划项目(SJCX19_0702)、江苏理工学院横向项目(KYH18058)及江苏理工学院横向项目(KYH19178)资助
详细信息
    作者简介:

    姜宇杰(1994−),硕士研究生,研究方向为不锈钢电弧增材制造,121697807@qq.com

    通讯作者:

    陈菊芳,教授,硕士生导师,jfchen@jsut.edu.cn

  • 中图分类号: TG156

Application of PCA-TOPSIS Method to Optimization of Processing Parameters in Wire Arc Additive Manufacturing of Stainless Steel

  • 摘要: 为了提高不锈钢电弧增材工艺的增材效率,利用308不锈钢丝材在304不锈钢基体上进行电弧增材。利用正交试验法设计工艺参数,运用光学显微镜分析增材组织的形貌,通过显微硬度计测试增材组织的显微硬度分布。依据熔覆层的熔池尺寸,采用PCA-TOPSIS法作为评价方法。以熔宽、余高最大,熔深最小为优化目标,通过MATLAB计算得出最佳工艺参数为电弧电流I = 200 A,焊接速度Vs = 42 cm/min,送丝速度Vf = 180 cm/min。结果表明,该工艺参数下的熔覆层与基体呈现良好的冶金结合,无气孔和裂纹等缺陷。
  • 图  1  电弧增材设备

    图  2  电弧增材试样表面形貌

    图  3  电弧增材熔覆层示意图

    图  4  试样9增材层轮廓组织图

    图  5  试样9金相组织

    图  6  试样9显微硬度

    表  1  基材和丝材的化学成分

    元素 基材304不锈钢 焊丝308不锈钢
    C ≤0.08 ≤0.08
    Mn ≤2.00 ≤2.00
    P ≤0.045 ≤0.045
    S ≤0.03 ≤0.03
    Si ≤1.0 ≤0.75
    Cr 18.0 ~ 20.0 19.0 ~ 21.0
    Ni 8.0 ~ 10.5 10.0 ~ 12.0
    下载: 导出CSV

    表  2  电弧增材工艺参数

    等级因素
    焊接电流I/A焊接速度
    Vs /(cm·min−1)
    送丝速度
    Vf /(cm·min−1)
    118014130
    219028180
    320042230
    下载: 导出CSV

    表  3  正交试验方案

    序号因素水平
    IVsVf
    1111
    2122
    3133
    4212
    5223
    6231
    7313
    8321
    9332
    下载: 导出CSV

    表  4  正交试验设计及结果

    序号I/AVs /(cm·min−1)Vf /(cm·min−1)B/mmH/mmh/mm
    1180141308.531.641.88
    2180281804.061.291.18
    3180422305.290.751.10
    4190141808.501.653.13
    5190282305.981.110.91
    6190421305.340.191.15
    72001423010.881.282.71
    8200281307.191.060.95
    9200421805.451.260.4
    下载: 导出CSV

    表  5  正交试验的数据分析

    参数B/mmH/mmh/mm
    k1k2k3rk1k2k3rk1k2k3r
    I/A33.933.139.26.26.24.96.01.26.98.76.81.9
    Vs/(cm·min−1)46.532.826.819.77.65.83.73.912.95.14.48.5
    Vf/(cm·min−1)35.134.136.92.84.87.05.22.26.67.97.91.2
    下载: 导出CSV

    表  6  主成分对应的贡献率

    主成分贡献率
    熔宽B0.02
    余高H0.2
    熔深h0.72
    下载: 导出CSV

    表  7  决策矩阵

    序号B/mmH/mmh/mm
    10.0080.090.115
    20.0040.070.180
    30.0050.040.194
    40.0080.090.065
    50.0060.060.238
    60.0050.010.187
    70.0100.070.079
    80.0070.060.223
    90.0050.070.533
    下载: 导出CSV

    表  8  熔池尺寸的相对接近度

    序号${D^ - } $${D^ + } $${C^ + } $
    10.0950.4180.18
    20.1300.3530.27
    30.1330.3420.28
    40.0800.4680.15
    50.1800.2970.38
    60.1220.3550.26
    70.0620.4540.12
    80.1660.3110.35
    90.4720.0210.96
    下载: 导出CSV
  • [1] 熊江涛, 耿海滨, 林鑫, 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015(23-24): 79-85

    XIONG J T, GENG H B, LIN X, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2015(23-24): 79-85 (in Chinese)
    [2] 朱胜, 柳建, 殷凤良, 等. 面向装备维修的增材再制造技术[J]. 装甲兵工程学院学报, 2014, 28(1): 81-85 doi: 10.11732/j.issn.1672-1497.2014.01.017

    ZHU S, LIU J, YIN F L, et al. Additive remanufacturing technology used in equipment repair[J]. Journal of Academy of Armored Force Engineering, 2014, 28(1): 81-85 (in Chinese) doi: 10.11732/j.issn.1672-1497.2014.01.017
    [3] KHAJAVI S H, PARTANEN J, HOLMSTRÖM J. Additive manufacturing in the spare parts supply Chain[J]. Computers in Industry, 2014, 65(1): 50-63 doi: 10.1016/j.compind.2013.07.008
    [4] 田彩兰, 陈济轮, 董鹏, 等. 国外电弧增材制造技术的研究现状及展望[J]. 航天制造技术, 2015(2): 57-60

    TIAN C L, CHEN J L, DONG P, et al. Current state and future development of the wire arc additive manufacture technology abroad[J]. Aerospace Manufacturing Technology, 2015(2): 57-60 (in Chinese)
    [5] 熊俊. 多层单道GMA增材制造成形特性及熔敷尺寸控制[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    XIONG J. Forming characteristics in multi-layer single-bead GMA additive manufacturing and control for deposition dimension[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese).
    [6] 周龙早, 刘顺洪, 丁冬平. 基于三维焊接熔敷的快速成形技术[J]. 电加工与模具, 2004(4): 1-5 doi: 10.3969/j.issn.1009-279X.2004.04.001

    ZHOU L Z, LIU S H, DING D P. Rapid prototyping technology based on three-dimensional welding deposition[J]. Electromachining & Mould, 2004(4): 1-5 (in Chinese) doi: 10.3969/j.issn.1009-279X.2004.04.001
    [7] 杨继东, 牛燃恒, 王飞龙. 电弧增材制造中轮廓环优化处理研究[J]. 机械工程师, 2018(12): 10-13 doi: 10.3969/j.issn.1002-2333.2018.12.003

    YANG J D, NIU R H, WANG F L. Research on optimization process of contour ring in wire arc additive manufacturing[J]. Mechanical Engineer, 2018(12): 10-13 (in Chinese) doi: 10.3969/j.issn.1002-2333.2018.12.003
    [8] 毛军军, 李侠, 吴涛. 结合粗集模糊熵和PCA载荷阵改进的TOPSIS方法[J]. 计算机工程与应用, 2011, 47(18): 56-59

    MAO J J, LI X, WU T. Applying fuzzy entropy of rough set and PCA loading matrix to improvements of TOPSIS method[J]. Computer Engineering and Applications, 2011, 47(18): 56-59 (in Chinese)
    [9] MARZBAN J, GHASEMINEJAD P, AHMADZADEH M H, et al. Experimental investigation and statistical optimization of laser surface cladding parameters[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 1163-1172 doi: 10.1007/s00170-014-6338-x
    [10] 朱刚贤, 张安峰, 李涤尘. 激光熔覆工艺参数对熔覆层表面平整度的影响[J]. 中国激光, 2010, 37(1): 296-301 doi: 10.3788/CJL20103701.0296

    ZHU G X, ZHANG A F, LI D C. Effect of process parameters on surface smoothness in laser cladding[J]. Chinese Journal of Lasers, 2010, 37(1): 296-301 (in Chinese) doi: 10.3788/CJL20103701.0296
    [11] HEMMATI I, OCELIK V, DE HOSSON J T M. Dilution effects in laser cladding of Ni-Cr-B-Si-C hardfacing alloys[J]. Materials Letters, 2012, 84: 69-72 doi: 10.1016/j.matlet.2012.06.054
    [12] 陈菊芳, 陈国炎, 孙凌燕, 等. H13钢表面激光熔覆层稀释率及强化效果研究[J]. 激光技术, 2017, 41(4): 596-601 doi: 10.7510/jgjs.issn.1001-3806.2017.04.028

    CHEN J F, CHEN G Y, SUN L Y, et al. Investigation of dilution ratio and strengthening effect of laser cladded coating on H13 steel[J]. Laser Technology, 2017, 41(4): 596-601 (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2017.04.028
    [13] 陈峰, 周金宇, 陈菊芳, 等. PCA-TOPSIS法在激光熔覆工艺参数优化中的应用[J]. 机械设计与制造, 2018(3): 120-123 doi: 10.3969/j.issn.1001-3997.2018.03.036

    CHEN F, ZHOU J Y, CHEN J F, et al. Optimization of process parameters for laser cladding based on PCA-TOPSIS method[J]. Machinery Design & Manufacture, 2018(3): 120-123 (in Chinese) doi: 10.3969/j.issn.1001-3997.2018.03.036
    [14] 张永康, 崔承云, 肖荣诗, 等. 先进激光制造技术[M]. 镇江: 江苏大学出版社, 2011.

    ZHANG Y K, CUI C Y, XIAO R S, et al. Advanced laser manufacturing technology[M]. Zhenjiang: Jiangsu University Press, 2011 (in Chinese).
    [15] 肖雨晨. 双相不锈钢电弧增材制造的成形控制与性能分析[D]. 秦皇岛: 燕山大学, 2017.

    XIAO Y C. Forming control and performance analysis of duplex stainless steel based on the WAAM[D]. Qinhuangdao: Yanshan University, 2017 (in Chinese).
    [16] 刘勇. CMT电弧熔丝增材制造304不锈钢组织和性能研究[D]. 沈阳: 沈阳工业大学, 2018.

    LIU Y. Research on the microstructure and mechanical property of 304 stainless steel produced by CMT wire arc additive manufacturing[D]. Shenyang: Shenyang University of Technology, 2018 (in Chinese).
    [17] 孙晓娜, 雷毅, 张鹰. 厚板奥氏体不锈钢焊缝显微组织分析[J]. 金属热处理, 2006, 31(10): 21-23 doi: 10.3969/j.issn.0254-6051.2006.10.006

    SUN X N, LEI Y, ZHANG Y. Microstructure analysis of weld joint for austenitic stainless steel thick plate[J]. Heat Treatment of Metals, 2006, 31(10): 21-23 (in Chinese) doi: 10.3969/j.issn.0254-6051.2006.10.006
    [18] LIPPOLD J C, KOTECKI D J. 不锈钢焊接冶金学及焊接性[M]. 陈剑虹, 译. 北京: 机械工业出版社, 2008.

    LIPPOLD J C, KOTECKI D J. Welding metallurgy and weldability of stainless steels[M]. CHEN J H, trans. Beijing: China Machine Press, 2008 (in Chinese).
    [19] 郝建军, 马璐萍. 熔焊基础与金属材料焊接[M]. 北京: 北京理工大学出版社, 2010.

    HAO J J, MA L P. Weld foundation to metal material[M]. Beijing: Beijing Institute of Technology Press, 2010 (in Chinese)
    [20] 王红颖, 崔承云, 周杰. 工具钢表面激光熔覆Co基合金涂层的组织及性能[J]. 吉林大学学报, 2010, 40(4): 1000-1004

    WANG H Y, CUI C Y, ZHOU J. Microstructure and properties of cobalt-based alloy coating on tool steel surface prepared by laser cladding[J]. Journal of Jilin University, 2010, 40(4): 1000-1004 (in Chinese)
    [21] 张晓东, 董世运, 徐滨士, 等. 45钢表面激光熔覆Ni35合金涂层的组织及性能[J]. 装甲兵工程学院学报, 2009, 23(3): 73-76 doi: 10.3969/j.issn.1672-1497.2009.03.017

    ZHANG X D, DONG S Y, XU B S, et al. Microstructure and performance of Ni35 alloy laser cladding on 45 steel substrate[J]. Journal of Academy of Armored Force Engineering, 2009, 23(3): 73-76 (in Chinese) doi: 10.3969/j.issn.1672-1497.2009.03.017
    [22] XU P, LIN C X, ZHOU C Y, et al. Wear and corrosion resistance of laser cladding AISI 304 stainless steel/AL2O3 composite coatings[J]. Surface and Coatings Technology, 2014, 238: 9-14 doi: 10.1016/j.surfcoat.2013.10.028
    [23] 戴晓琴, 陈瀚宁, 雷剑波, 等. 激光增材制造304不锈钢显微结构特征与性能研究[J]. 热加工工艺, 2017, 46(16): 83-86

    DAI X Q, CHEN H N, LEI J B, et al. Study on microstructure characteristics and properties of 304 stainless steel by laser additive manufacturing[J]. Hot Working Technology, 2017, 46(16): 83-86 (in Chinese)
    [24] 郭卫, 李凯凯, 柴蓉霞, 等. 扫描顺序对激光熔覆304钢组织和性能的影响[J]. 激光与红外, 2018, 48(9): 1087-1093 doi: 10.3969/j.issn.1001-5078.2018.09.004

    GUO W, LI K K, CHAI R X, et al. Influence of the scanning sequence on microstructure and mechanical property of 304 steel by laser cladding[J]. Laser & Infrared, 2018, 48(9): 1087-1093 (in Chinese) doi: 10.3969/j.issn.1001-5078.2018.09.004
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  43
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回