留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光熔覆Ti-6Al-4V高速铣削切削力研究

张立峰 王盛 王宁 唐杰 陈鑫灿 安海涛

张立峰,王盛,王宁, 等. 激光熔覆Ti-6Al-4V高速铣削切削力研究[J]. 机械科学与技术,2021,40(4):562-565 doi: 10.13433/j.cnki.1003-8728.20200085
引用本文: 张立峰,王盛,王宁, 等. 激光熔覆Ti-6Al-4V高速铣削切削力研究[J]. 机械科学与技术,2021,40(4):562-565 doi: 10.13433/j.cnki.1003-8728.20200085
ZHANG Lifeng, WANG Sheng, WANG Ning, TANG Jie, CHEN Xincan, AN Haitao. Study on Cutting Force in High Speed Milling of Laser Cladding Ti-6Al-4V[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 562-565. doi: 10.13433/j.cnki.1003-8728.20200085
Citation: ZHANG Lifeng, WANG Sheng, WANG Ning, TANG Jie, CHEN Xincan, AN Haitao. Study on Cutting Force in High Speed Milling of Laser Cladding Ti-6Al-4V[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 562-565. doi: 10.13433/j.cnki.1003-8728.20200085

激光熔覆Ti-6Al-4V高速铣削切削力研究

doi: 10.13433/j.cnki.1003-8728.20200085
基金项目: 高等教育中央高校基本科研项目(3122018C007)
详细信息
    作者简介:

    张立峰(1983−),讲师,硕士生导师,博士,研究方向为航空材料精密加工,复合材料界面力学,zhanglifeng@tju.edu.cn

  • 中图分类号: TB332

Study on Cutting Force in High Speed Milling of Laser Cladding Ti-6Al-4V

  • 摘要: 为了研究激光熔覆Ti-6Al-4V这类材料的高速切削加工性能,探明高速铣削切削力的影响机制,采用硬质合金刀具侧铣工艺对激光熔覆和铸造钛合金进行高速铣削的对比实验研究。结果表明,激光熔覆Ti-6Al-4V铣削时出现明显的各向异性,其中沿熔覆轨迹0°方向铣削时切削力最大,90°方向铣削时切削力最小,且各方向铣削力均低于铸造型钛合金。钛合金铣削过程中,当切削速度超过400 m/min时,铣削主切削力呈明显降低趋势。此外,铣削参数每齿进给量和铣削深度是影响切削力变化最显著的因素。
  • 图  1  动态切削力测试平台

    图  2  铣削方向对激光熔覆TC4的影响

    图  3  每齿进给量对主切削力的影响

    图  4  铣削深度对主切削力的影响

    图  5  铣削速度对主切削力的影响

    表  1  熔覆TC4粉末成分组成 %

    w(Al)w(V)w(Fe)w(C)w(N)w(H)w(O)w(Ti)
    5.53.50.30.10.050.0150.2余量
    下载: 导出CSV

    表  2  铣削实验参数表

    类型 实验参数
    铣床型号 FANUC-robodrill α-D14MiA立式加工中心
    铣削方式 侧铣
    加工材料 激光增材TC4
    铣刀类型 Walter WMG40硬质合金刀具
    铣刀直径 20 mm
    刀具刃数 2
    刀具参数 前角12°,后角14°,螺旋角35°
    冷却方式 50 L/min,乳化液( 5%)
    铣削速度v 100,200,400, 600,800 mm/min
    每齿进给量fz 0.02,0.04,0.06, 0.08,0.10 mm
    切削深度ae 0.4,0.6 ,0.8,1.0,1.2 mm
    下载: 导出CSV
  • [1] 刘亚军, 李皓, 李士鹏, 等. 钛合金/CFRP叠层构件螺旋铣孔界面切削热研究[J]. 机械科学与技术, 2019, 38(9): 1406-1413

    LIU Y J, LI H, LI S P, et al. Investigation of cutting heat of interface in helical milling of titanium and carbon fiber reinforced plastic stack[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1406-1413 (in Chinese)
    [2] 于书宇, 秦旭达, 李士鹏, 等. CFRP/钛合金叠层构件钻孔刀具制孔质量对比研究[J]. 机械科学与技术, 2017, 36(11): 1641-1645

    YU S Y, QIN X D, LI S P, et al. Comparison study on machining property of drilling tools for CFRP/titanium alloy laminated structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1641-1645 (in Chinese)
    [3] 姚倡锋, 豆兴堂, 陈广超, 等. TiAlN涂层硬质合金可转位刀具快速铣削钛合金刀片磨损研究[J]. 机械科学与技术, 2017, 36(8): 1212-1217

    YAO C F, DOU X T, CHEN G C, et al. Research of blade wear for TiAlN coated carbide in indexable tool high feed milling of titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1212-1217 (in Chinese)
    [4] 贺英伦, 任成祖, 杨晓勇, 等. 冷却条件对Ti-6Al-4V铣削表面完整性影响研究[J]. 机械科学与技术, 2016, 35(5): 729-733

    HE Y L, REN C Z, YANG X Y, et al. Effects of cooling conditions on surface integrity during side-milling of TC4 alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(5): 729-733 (in Chinese)
    [5] HOJATI F, DANESHI A, SOLTANI B, et al. Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process[J]. Precision Engineering, 2020, 62: 1-9 doi: 10.1016/j.precisioneng.2019.11.002
    [6] HUANG P, LI H C, ZHU W L, et al. Effects of eco-friendly cooling strategy on machining performance in micro-scale diamond turning of Ti-6Al-4V[J]. Journal of Cleaner Production, 2020, 243: 118526 doi: 10.1016/j.jclepro.2019.118526
    [7] SINGH R, DUREJA J S, DOGRA M, et al. Influence of graphene-enriched nanofluids and textured tool on machining behavior of Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-4): 1685-1697 doi: 10.1007/s00170-019-04377-8
    [8] 王情情. 切削加工Ti-6Al-4V微观组织形成及演化机理研究[D]. 济南: 山东大学, 2019.

    WANG Q Q. Investigations on the microstructure formations and evolutions during machining of Ti-6Al-4V[D]. Ji'nan: Shandong University, 2019 (in Chinese).
    [9] ZAKARIA M F, SUHAIMI M A, SHARIF S, et al. The application of cold air and nano-MQL as cooling strategy in high speed milling of titanium alloy Ti-6Al-4V: a review[J]. AIP Conference Proceedings, 2019, 2129(1): 020175
    [10] SAHU N K, ANDHARE A B, RAJU R A. Evaluation of performance of nanofluid using multiwalled carbon nanotubes for machining of Ti-6AL-4V[J]. Machining Science and Technology, 2018, 22(3): 476-492 doi: 10.1080/10910344.2017.1365898
    [11] SHAMS O A, PRAMANIK A, CHANDRATILLEKE T T, et al. Comparative assessment and merit appraisal of thermally assisted machining techniques for improving machinability of titanium alloys[M]//DAVIM J P. Introduction to Mechanical Engineering. Cham: Springer, 2018: 297-331.
    [12] M'SAOUBI R, AXINTE D, SOO S L, et al. High performance cutting of advanced aerospace alloys and composite materials[J]. CIRP Annals, 2015, 64(2): 557-580 doi: 10.1016/j.cirp.2015.05.002
    [13] ZHAO Q, QIN X D, JI C H, et al. Tool life and hole surface integrity studies for hole-making of Ti6Al4V alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(5-8): 1017-1026 doi: 10.1007/s00170-015-6890-z
    [14] BYRNE G, AHEARNE E, COTTERELL M, et al. High Performance Cutting (HPC) in the new era of digital manufacturing–a roadmap[J]. Procedia CIRP, 2016, 46: 1-6 doi: 10.1016/j.procir.2016.05.038
    [15] LI X, YANG S L, LU Z H, et al. Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens[J]. Journal of Materials Processing Technology, 2020, 275: 116386 doi: 10.1016/j.jmatprotec.2019.116386
    [16] 王涛, 乔伟林, 李战, 等. 激光修复TC4钛合金材料动态力学性能[J]. 机械科学与技术, 2019, 38(7): 1029-1034

    WANG T, QIAO W L, LI Z, et al. Dynamic mechanical properties of laser-repaired TC4 titanium alloy material[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(7): 1029-1034 (in Chinese)
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  33
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回