留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

比例-积分-微分控制算法求解结构拓扑优化问题

王文玥 赵清海 张洪信 张铁柱 袁林 李信卿 王新亮

王文玥,赵清海,张洪信, 等. 比例-积分-微分控制算法求解结构拓扑优化问题[J]. 机械科学与技术,2021,40(2):223-229 doi: 10.13433/j.cnki.1003-8728.20200058
引用本文: 王文玥,赵清海,张洪信, 等. 比例-积分-微分控制算法求解结构拓扑优化问题[J]. 机械科学与技术,2021,40(2):223-229 doi: 10.13433/j.cnki.1003-8728.20200058
WANG Wenyue, ZHAO Qinghai, ZHANG Hongxin, ZHANG Tiezhu, YUAN Lin, LI Xinqing, WANG Xinliang. Proportional-integral-differential Control Method on Solving Structural Topology Optimization Problems[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 223-229. doi: 10.13433/j.cnki.1003-8728.20200058
Citation: WANG Wenyue, ZHAO Qinghai, ZHANG Hongxin, ZHANG Tiezhu, YUAN Lin, LI Xinqing, WANG Xinliang. Proportional-integral-differential Control Method on Solving Structural Topology Optimization Problems[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 223-229. doi: 10.13433/j.cnki.1003-8728.20200058

比例-积分-微分控制算法求解结构拓扑优化问题

doi: 10.13433/j.cnki.1003-8728.20200058
基金项目: 国家自然科学基金项目(51705268)与中国博士后科学基金面上项目(2017M612191)
详细信息
    作者简介:

    王文玥(1993−),硕士研究生,研究方向为车辆节能减排与新能源技术,wwyue617@163.com

    通讯作者:

    赵清海,讲师,博士,zqhbit@163.com

  • 中图分类号: TH122

Proportional-integral-differential Control Method on Solving Structural Topology Optimization Problems

  • 摘要: 拓扑优化具有设计变量多、目标性能与约束条件为设计变量的非线性、非单调隐式函数的特征,计算效率值得商榷。因此探索高效稳定的求解方法是结构拓扑优化的核心问题。提出一种基于PID控制算法的拓扑优化求解方法,采用固体各向同性微结构材料惩罚模型(SIMP)方法建立单工况条件下质量约束条件下结构柔度最小化拓扑优化模型,推导出基于PID法的设计变量迭代格式,引入基于Helmholtz偏微分方程的过滤方式抑制出现的数值不稳定问题,并将所提方法扩展到两类多工况结构拓扑优化问题,通过与优化准则法(Optimality criteria, OC)和移动渐近线法(Method of moving asymptotes,MMA)进行数值结果比较可知,PID控制方法具有设置简便、高效求解、收敛稳定且无需梯度信息的优点。
  • 图  1  PID控制原理图

    图  2  悬臂梁结构设计区域

    图  3  采用PID法获得结构拓扑优化构型

    图  4  悬臂梁结构柔度与体积约束迭代曲线

    图  5  米歇尔结构设计区域

    图  6  采用PID法获得多工况结构拓扑优化构型

    图  7  多工况结构拓扑优化目标函数迭代过程

    表  1  单工况条件下结构柔度最小值与最大值

    方法F1F2F3
    CminCmax迭代次数CminCmax迭代次数CminCmax迭代次数
    PID 23.7787 221.6250 73 3235.3469 25519.7488 21 23.7787 221.6250 73
    OC 23.6413 221.6250 187 3227.9401 25519.7488 27 23.6413 221.6250 187
    MMA 23.6303 221.6250 387 3221.3308 25519.7488 106 23.6290 221.6250 387
    下载: 导出CSV
  • [1] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224 doi: 10.1016/0045-7825(88)90086-2
    [2] DEATON J D, GRANDHI R V. A survey of structural and multidisciplinary continuum topology optimization: post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 1-38 doi: 10.1007/s00158-013-0956-z
    [3] SIGMUND O, MAUTE K. Topology optimization approaches: a comparative review[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055 doi: 10.1007/s00158-013-0978-6
    [4] 杨畅. 基于拓扑优化方法的汽车传动轴轻量化设计[D]. 武汉: 湖北工业大学, 2019

    YANG C. Lightweight design of vehicle propeller shaft based on topology optimization method[D]. Wuhan: Hubei University of Technology, 2019 (in Chinese)
    [5] 金娜. 柱盘结构的拓扑优化及其MATLAB实现[D]. 吉林: 东北电力大学, 2019

    JIN N. Topology optimization of column-disk structure and its realization in MATLAB[D]. Jilin: Northeast Electric Power University, 2019 (in Chinese)
    [6] 宋丽平, 王聪兴, 赵德祥. 重载挂车承载梁结构拓扑优化设计[J]. 现代机械, 2019(1): 11-14

    SONG L P, WANG C X, ZHAO D X. Topological optimization design of the bearing beam structure of heavy-duty trailer[J]. Modern Machinery, 2019(1): 11-14 (in Chinese)
    [7] BENDSØE M P, SIGMUND O. Topology optimization theory, methods and application[M]. 2nd ed. Berlin: Springer, 2003
    [8] HASSANI B, HINTON E. A review of homogenization and topology optimization III-topology optimization using optimality criteria[J]. Computers & Structures, 1998, 69(6): 739-756
    [9] LIU K, TOVAR A. An efficient 3D topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2014, 50(6): 1175-1196 doi: 10.1007/s00158-014-1107-x
    [10] HERBSTER A F, ROMERO M A. Rigorous and optimized few-mode erbium-doped fiber amplifier design by using topology optimization and genetic algorithms[J]. Optical Engineering, 2017, 56(4): 046102 doi: 10.1117/1.OE.56.4.046102
    [11] MARJANI A, SHIRAZIAN S, ASADOLLAHZADEH M. Topology optimization of neural networks based on a coupled genetic algorithm and particle swarm optimization techniques (c-GA-PSO-NN)[J]. Neural Computing and Applications, 2018, 29(11): 1073-1076 doi: 10.1007/s00521-016-2619-7
    [12] YOO K S, HAN S Y. Topology optimum design of compliant mechanisms using modified ant colony optimization[J]. Journal of Mechanical Science and Technology, 2015, 29(8): 3321-3327 doi: 10.1007/s12206-015-0729-2
    [13] 王威, 杨平. 智能PID控制方法的研究现状及应用展望[J]. 自动化仪表, 2008, 29(10): 1-3, 7 doi: 10.3969/j.issn.1000-0380.2008.10.001

    WANG W, YANG P. Intelligent PID control of the status and the application of prospect[J]. Process Automation Instrumentation, 2008, 29(10): 1-3, 7 (in Chinese) doi: 10.3969/j.issn.1000-0380.2008.10.001
    [14] 王东风, 韩璞. 基于粒子群优化的混沌系统比例-积分-微分控制[J]. 物理学报, 2006, 55(4): 1644-1650 doi: 10.3321/j.issn:1000-3290.2006.04.019

    WANG D F, HAN P. Proportional-integral-derivative chaotic system control algorithm based on particle swarm optimization[J]. Acta Physica Sinica, 2006, 55(4): 1644-1650 (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.04.019
    [15] 吴宏鑫, 沈少萍. PID控制的应用与理论依据[J]. 控制工程, 2003, 10(1): 37-42 doi: 10.3969/j.issn.1671-7848.2003.01.009

    WU H X, SHEN S P. Basis of theory and applications on PID control[J]. Control Engineering of China, 2003, 10(1): 37-42 (in Chinese) doi: 10.3969/j.issn.1671-7848.2003.01.009
    [16] 崔明涛, 陈建军, 拓耀飞, 等. 区间参数柔性机构设计的混合元胞自动机方法[J]. 机械工程学报, 2007, 43(7): 39-43 doi: 10.3321/j.issn:0577-6686.2007.07.008

    CUI M T, CHEN J J, TUO Y F, et al. Compliant mechanism design with interval parameters using the hybrid cellular automaton method[J]. Chinese Journal of Mechanical Engineering, 2007, 43(7): 39-43 (in Chinese) doi: 10.3321/j.issn:0577-6686.2007.07.008
    [17] 赵龙彪, 高亮, 陈志敏, 等. 基于比例微分优化准则的拓扑优化方法[J]. 中国机械工程, 2011, 22(3): 345-350

    ZHAO L B, GAO L, CHEN Z M, et al. A proportional and differential optimality criterion method for topology optimization[J]. China Mechanical Engineering, 2011, 22(3): 345-350 (in Chinese)
    [18] TOVAR A, KHANDELWAL K. Topology optimization for minimum compliance using a control strategy[J]. Engineering Structures, 2013, 48: 674-682 doi: 10.1016/j.engstruct.2012.12.008
    [19] BIYIKLI E, TO A C. Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB[J]. PLoS One, 2015, 10(12): e0145041 doi: 10.1371/journal.pone.0145041
    [20] BENDSØE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9-10): 635-654 doi: 10.1007/s004190050248
    [21] STOLPE M, SVANBERG K. An alternative interpolation scheme for minimum compliance topology optimization[J]. Structural and Multidisciplinary Optimization, 2001, 22(2): 116-124 doi: 10.1007/s001580100129
    [22] SIGMUND O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4-5): 401-424 doi: 10.1007/s00158-006-0087-x
    [23] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781 doi: 10.1002/nme.3072
    [24] ANDREASSEN E, CLAUSEN A, SCHEVENELS M, et al. Efficient topology optimization in MATLAB using 88 lines of code[J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1-16 doi: 10.1007/s00158-010-0594-7
    [25] MIN S, NISHIWAKI S, KIKUCHI N. Unified topology design of static and vibrating structures using multiobjective optimization[J]. Computers & Structures, 2000, 75(1): 93-116
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  91
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回