留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd82Si18非晶合金结构演变的分子动力学模拟研究

薛博钰

薛博钰. Pd82Si18非晶合金结构演变的分子动力学模拟研究[J]. 机械科学与技术, 2020, 39(4): 629-634. doi: 10.13433/j.cnki.1003-8728.20200005
引用本文: 薛博钰. Pd82Si18非晶合金结构演变的分子动力学模拟研究[J]. 机械科学与技术, 2020, 39(4): 629-634. doi: 10.13433/j.cnki.1003-8728.20200005
Xue Boyu. Molecular Dynamics Simulation of Structure Evolution in Amorphous Pd82Si18 Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 629-634. doi: 10.13433/j.cnki.1003-8728.20200005
Citation: Xue Boyu. Molecular Dynamics Simulation of Structure Evolution in Amorphous Pd82Si18 Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 629-634. doi: 10.13433/j.cnki.1003-8728.20200005

Pd82Si18非晶合金结构演变的分子动力学模拟研究

doi: 10.13433/j.cnki.1003-8728.20200005
详细信息
    作者简介:

    薛博钰(1998-), 研究方向为材料相变、液体结构, 994435837@qq.com

  • 中图分类号: TB303

Molecular Dynamics Simulation of Structure Evolution in Amorphous Pd82Si18 Alloy

  • 摘要: 为了研究Pd-Si非晶合金的结构和非晶转变过程中结构的演化规律,通过分子动力学(MD)方法模拟了Pd-Si体系从液态到非晶态的非晶转变过程,并利用双体分布函数、Voronoi多面体等方法表征了原子尺度结构。结果表明,通过MD模拟得到的非晶转变温度和合金液体的双体分布函数均与实验结果相一致。在非晶合金结构中,Pd与Si原子相互吸引并排列在第一近邻的位置上,而Si与Si原子之间的相互排斥作用使得它们之间的距离较大。在短程序结构(SRO)方面,在Pd原子周围并无占据主导地位的SRO,而在Si原子周围Z9和Z10为占据主导地位的SRO。此外,随着温度的降低,配位数缓慢增加,而SRO的含量和五重局部对称性的程度迅速增加,并且SRO连接得更加紧密。
  • 图  1  能量(E-3kBT)与温度(T)的关系曲线

    图  2  不同温度下Pd82Si18合金液体的总体双体及非晶合金的偏双体分布函数

    图  3  5种Voronoi多面体的含量及Z9和Z10结构

    图  4  不同温度下Pd82Si18合金样品中的总体和偏CN

    图  5  5种含量最高的Voronoi多面体的总含量和团簇五重局部对称性的程度

    图  6  不同温度下占据主导地位的Voronoi多面体(以Pd或Si为中心的各5种)中心的分布图

  • [1] Chen M W. Mechanical behavior of metallic glasses:microscopic understanding of strength and ductility[J]. Annual Review of Materials Research, 2008, 38:445-469 doi: 10.1146/annurev.matsci.38.060407.130226
    [2] Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Progress in Materials Science, 2012, 57(3):487-656 doi: 10.1016/j.pmatsci.2011.07.001
    [3] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48(1):279-306 doi: 10.1016/S1359-6454(99)00300-6
    [4] Zeng Y Q, Yang S C, Xiang H, et al. Multicomponent nanoporous metals prepared by dealloying Pd80-xNixP20 metallic glasses[J]. Intermetallics, 2015, 61:66-71 doi: 10.1016/j.intermet.2015.02.003
    [5] Johnson W L. Bulk glass-forming metallic alloys:science and technology[J]. MRS Bulletin, 1999, 24(10):42-56 doi: 10.1557/S0883769400053252
    [6] Wang W H, Dong C, Shek C H. Bulk metallic glasses[J]. Materials Science and Engineering:R:Reports, 2004, 44(2-3):45-89 doi: 10.1016/j.mser.2004.03.001
    [7] Xu D H, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx(x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass[J]. Acta Materialia, 2004, 52(9):2621-2624 doi: 10.1016/j.actamat.2004.02.009
    [8] Yao K F, Chen N. Pd-Si binary bulk metallic glass[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2008, 51(4):414-420 doi: 10.1007/s11433-008-0051-4
    [9] Xia L, Li W H, Fang S S, et al. Binary Ni-Nb bulk metallic glasses[J]. Journal of Applied Physics, 2006, 99(2):026103 doi: 10.1063/1.2158130
    [10] Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems[J]. Progress in Materials Science, 1998, 43(5):365-520 doi: 10.1016/S0079-6425(98)00005-X
    [11] Ohkubo T, Hirotsu Y. Molecular dynamics simulation of local atomic structure in amorphous Pd-Si alloys[J]. Materials Science and Engineering:A, 1996, 217-218:388-391 doi: 10.1016/S0921-5093(97)80009-3
    [12] Ding J, Cheng Y Q, Ma E. Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid[J]. Acta Materialia, 2014, 69:343-354 doi: 10.1016/j.actamat.2014.02.005
    [13] Kajita S, Kohara S, Onodera Y, et al. Structural analysis of Pd-Cu-Si metallic glassy alloy thin films with varying glass transition temperature[J]. Materials Transactions, 2011, 52(7):1349-1355 doi: 10.2320/matertrans.M2011023
    [14] Dong F, Yue G Q, Guo Y R, et al. Si-centered capped trigonal prism ordering in liquid Pd82Si18 alloy study by first-principles calculations[J]. RSC Advances, 2017, 7(29):18093-18098 doi: 10.1039/C6RA28232F
    [15] Finney J L. Random packings and the structure of simple liquids. I. Geometry of random close packing[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1970, 319(1539):479-493
    [16] Finney J L. Modelling the structures of amorphous metals and alloys[J]. Nature, 1977, 266(5600):309-314 doi: 10.1038/266309a0
    [17] Bernard P S. A deterministic vortex sheet method for boundary layer flow[J]. Journal of Computational Physics, 1995, 117(1):132-145 doi: 10.1006/jcph.1995.1051
    [18] PdSi EAM potential[EB/OL]. https://sites.google.com/site/eampotentials/Home/PdSi
    [19] Egami T, Billinge S J L. Underneath the Bragg peaks:structural analysis of complex materials[M]. Oxford:Pergamon, 2003.
    [20] Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1):511-519
    [21] Hoover W G. Canonical dynamics:equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3):1695-1697 doi: 10.1103/PhysRevA.31.1695
    [22] Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids[J]. Nature Communications, 2015, 6:8310 doi: 10.1038/ncomms9310
    [23] Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses[J]. Progress in Materials Science, 2011, 56(4):379-473 doi: 10.1016/j.pmatsci.2010.12.002
    [24] Li M Z. Correlation between local atomic symmetry and mechanical properties in metallic glasses[J]. Journal of Materials Science & Technology, 2014, 30(6):551-559
    [25] Mendelev M I, Zhang F, Ye Z, et al. Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10 alloy[J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23(4):045013 doi: 10.1088/0965-0393/23/4/045013
    [26] Wen T Q, Yao W J, Wang N. Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses[J]. Scientific Reports, 2017, 7(1):13164 doi: 10.1038/s41598-017-13611-w
    [27] Debenedetti P G, Stillinger F H. Stillinger. Supercooled liquids and the glass transition[J]. Nature, 2001, 410(6825):259-267 doi: 10.1038/35065704
  • 加载中
图(6)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  101
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 刊出日期:  2020-04-05

目录

    /

    返回文章
    返回