留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可倾转变形四旋翼飞行器建模与飞行仿真

刘彦伟 刘三娃 王李梦 牛福洲 李鹏阳 李言

刘彦伟, 刘三娃, 王李梦, 牛福洲, 李鹏阳, 李言. 可倾转变形四旋翼飞行器建模与飞行仿真[J]. 机械科学与技术, 2020, 39(4): 635-640. doi: 10.13433/j.cnki.1003-8728.20200004
引用本文: 刘彦伟, 刘三娃, 王李梦, 牛福洲, 李鹏阳, 李言. 可倾转变形四旋翼飞行器建模与飞行仿真[J]. 机械科学与技术, 2020, 39(4): 635-640. doi: 10.13433/j.cnki.1003-8728.20200004
Liu Yanwei, Liu Sanwa, Wang Limeng, Niu Fuzhou, Li Pengyang, Li Yan. Modeling and Flight Simulation of a Tilt-deformable Quadrotor[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 635-640. doi: 10.13433/j.cnki.1003-8728.20200004
Citation: Liu Yanwei, Liu Sanwa, Wang Limeng, Niu Fuzhou, Li Pengyang, Li Yan. Modeling and Flight Simulation of a Tilt-deformable Quadrotor[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 635-640. doi: 10.13433/j.cnki.1003-8728.20200004

可倾转变形四旋翼飞行器建模与飞行仿真

doi: 10.13433/j.cnki.1003-8728.20200004
基金项目: 

江苏省高等学校自然科学研究面上项目 18KJB460026

苏州科技计划项目 SYG201813

中国博士后科学基金项目 2018M643695

陕西省自然科学基础研究计划项目 2018JQ5062

详细信息
    作者简介:

    刘彦伟(1987-), 讲师, 博士, 研究方向为仿生机器人技术, liuyw@xaut.edu.cn

  • 中图分类号: V279

Modeling and Flight Simulation of a Tilt-deformable Quadrotor

  • 摘要: 为了提高四旋翼飞行器在地震灾难现场等内部狭窄空间中的通过性,提出了一种新型的螺旋桨可倾转的四旋翼飞行器。该四旋翼飞行器在传统四旋翼飞行器基础上增加了一个倾转自由度,实现四个螺旋桨同步、同向倾转,进而可以改变飞行器构型来适应狭窄飞行空间。建立了倾转变形四旋翼飞行器动力学数学模型,在Simulink/SimMechanics仿真环境中搭建了四旋翼飞行器动力学模型,设计了串级PID控制器,实现了四旋翼飞行器在倾转状态下稳定飞行,分析了飞行器穿越狭窄空间的飞行动作及轨迹跟踪情况。仿真结果表明倾转变形四旋翼飞行器构型设计和仿真系统是可行的。
  • 图  1  倾转四旋翼无人机结构

    图  2  倾转四旋翼飞行器简化模型

    图  3  倾转四旋翼飞行器受力分析图

    图  4  倾转四旋翼飞行器动力学仿真模型框图

    图  5  倾转四旋翼飞行器动力学仿真模型

    图  6  倾转四旋翼飞行器控制系统框图

    图  7  倾转四旋翼飞行器控制系统Simulink仿真框图

    图  8  飞行器位置与倾转角度输入

    图  9  倾转四旋翼飞行器飞行仿真试验结果

    图  10  倾转四旋翼飞行器通过狭窄缝隙动作序列

    图  11  x位置响应曲线

    图  12  y位置响应曲线

    图  13  z位置响应曲线

  • [1] Falanga D, Kleber K, Mintchev S, et al. The foldable drone:a morphing quadrotor that can squeeze and fly[J]. IEEE Robotics and Automation Letters, 2019, 4(2):209-216
    [2] Zhao N, Luo Y D, Deng H B, et al. The deformable quad-rotor: design, kinematics and dynamics characterization, and flight performance validation[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE, 2017: 2391-2396
    [3] Desbiez A, Expert F, Boyron M, et al. X-Morf: a crash-separable quadrotor that morfs its X-geometry in flight[C]//Proceedings of 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). Linkoping, Sweden: IEEE, 2017: 222-227
    [4] Riviere V, Manecy A, Viollet S. Agile robotic fliers:a morphing-based approach[J]. Soft Robotics, 2018, 5(5):541-553 doi: 10.1089/soro.2017.0120
    [5] Ryll M, Bülthoff H H, Giordano P R. Modeling and control of a quadrotor UAV with tilting propellers[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul, USA: IEEE, 2012: 4606-4613
    [6] Ryll M, Bülthoff H H, Giordano P R. A novel overactuated quadrotor Unmanned Aerial Vehicle:modeling, control, and experimental validation[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2):540-556 doi: 10.1109/TCST.2014.2330999
    [7] Oosedo A, Abiko S, Narasaki S, et al. Flight control systems of a quad tilt rotor unmanned aerial vehicle for a large attitude change[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, USA: IEEE, 2015: 2326-2331
    [8] Oosedo A, Abiko S, Narasaki S, et al. Large attitude change flight of a quad tilt rotor unmanned aerial vehicle[J]. Advanced Robotics, 2016, 30(5):326-337 doi: 10.1080/01691864.2015.1134344
    [9] Ji R H, Ma J. Mathematical modeling and analysis of a quadrotor with tilting propellers[C]//Proceedings of 201837th Chinese Control Conference (CCC). Wuhan, China: IEEE, 2018: 1718-1722
    [10] Gerber M J, Tsao T C. Twisting and tilting rotors for high-efficiency, thrust-vectored quadrotors[J]. Journal of Mechanisms and Robotics, 2018, 10(6):061013 doi: 10.1115/1.4041261
    [11] Junaid A B, De Cerio Sanchez A D, Bosch J B, et al. Design and implementation of a dual-axis tilting quadcopter[J]. Robotics, 2018, 7(4):65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000196898
    [12] Kawasaki K, Motegi Y, Zhao M J, et al. Dual connected bi-copter with new wall trace locomotion feasibility that can fly at arbitrary tilt angle[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015: 524-531
    [13] Myeong W, Myung H. Development of a wall-climbing drone capable of vertical soft landing using a tilt-rotor mechanism[J]. IEEE Access, 2018, 7:4868-4879
    [14] Fukuda T, Sakaguchi A, Takimoto T, et al. Modeling and stabilization of the novel quadcopter with tilting propeller[C]//Proceedings of 2016 International Symposium on Nonlinear Theory and Its Applications. Yugawara, Japan: IEICE, 2016: 173-176
    [15] 鲁麟宏, 付荣, 王勇, 等.基于矫正广义走廊的电动倾转旋翼机模态转换[J].航空学报, 2018, 39(8):41-52 http://d.old.wanfangdata.com.cn/Periodical/hkxb201808004

    Lu L H, Fu R, Wang Y, et al. Mode conversion of electric tilt rotor aircraft based on corrected generalized corridor[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):41-52(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201808004
    [16] 张练, 孙凯军, 叶川, 等.新构型倾转旋翼无人机飞行力学建模[J].航空工程进展, 2019, 10(4):462-470 http://d.old.wanfangdata.com.cn/Periodical/hkgcjz201904005

    Zhang L, Sun K J, Ye C, et al. Flight mechanics modeling of the new configuration tilt-rotor[J]. Advances in Aeronautical Science and Engineering, 2019, 10(4):462-470(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkgcjz201904005
  • 加载中
图(13)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  128
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-18
  • 刊出日期:  2020-04-05

目录

    /

    返回文章
    返回