留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锆陶瓷纵扭超声磨削运动特性与试验分析

马文举 薛进学 杨宇辉 赵恒 胡广豪 隆志力

马文举,薛进学,杨宇辉, 等. 氧化锆陶瓷纵扭超声磨削运动特性与试验分析[J]. 机械科学与技术,2020,39(10):1580-1586 doi: 10.13433/j.cnki.1003-8728.20190306
引用本文: 马文举,薛进学,杨宇辉, 等. 氧化锆陶瓷纵扭超声磨削运动特性与试验分析[J]. 机械科学与技术,2020,39(10):1580-1586 doi: 10.13433/j.cnki.1003-8728.20190306
Ma Wenju, Xue Jinxue, Yang Yuhui, Zhao Heng, Hu Guanghao, Long Zhili. Kinematics Characteristics and Experimental Analysis of Longitudinal Torsional Ultrasonic Grinding for Zirconia Ceramics[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1580-1586. doi: 10.13433/j.cnki.1003-8728.20190306
Citation: Ma Wenju, Xue Jinxue, Yang Yuhui, Zhao Heng, Hu Guanghao, Long Zhili. Kinematics Characteristics and Experimental Analysis of Longitudinal Torsional Ultrasonic Grinding for Zirconia Ceramics[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1580-1586. doi: 10.13433/j.cnki.1003-8728.20190306

氧化锆陶瓷纵扭超声磨削运动特性与试验分析

doi: 10.13433/j.cnki.1003-8728.20190306
基金项目: 国家自然科学基金项目(U1713206)与深圳市学科布局基础研究项目(JCYJ20170413112645981, JCYJ20150928162432701)资助
详细信息
    作者简介:

    马文举(1992−),硕士研究生,研究方向为超声辅助精密加工,mawenju126@foxmail.com

    通讯作者:

    隆志力,副教授,博士生导师,longzhili@hit.edu.cn

  • 中图分类号: TG506.5;TG580.6

Kinematics Characteristics and Experimental Analysis of Longitudinal Torsional Ultrasonic Grinding for Zirconia Ceramics

  • 摘要: 以氧化锆陶瓷为研究对象,基于纵扭超声矢量分解原理,建立了单颗磨粒运动轨迹数学模型。借助MATLAB仿真软件,对比分析了普通磨削与纵扭超声磨削的运动轨迹,探讨了工艺参数对纵扭超声磨削运动轨迹的影响规律;同时通过普通磨削和纵扭超声磨削试验,研究了工艺参数对氧化锆陶瓷表面形貌的影响。结果表明:普通磨削与纵扭超声磨削运动轨迹仿真结果均与试验结果相吻合,验证了该运动轨迹数学模型的正确性;与普通磨削相比,纵扭超声磨削磨痕均匀、沟槽光滑,工件加工表面形貌得到明显改善。
  • 图  1  纵扭超声辅助磨削加工模型

    图  2  圆周超声矢量分解

    图  3  纵扭超声振动与普通磨削运动轨迹对比

    图  4  纵扭超声振动磨削参数对运动轨迹的影响

    图  5  主轴转速对单颗磨粒纵扭超声运动轨迹的影响

    图  6  进给速度对单颗磨粒纵扭超声运动轨迹的影响

    图  7  纵扭超声振动磨削试验方法

    图  8  纵扭超声振动加工试验装置

    图  9  磨削表面观测位置示意图

    图  10  氧化锆磨削表面磨粒轨迹

    图  11  工艺参数对纵扭超声加工表面形貌影响

    表  1  加工工艺条件

    磨削方式平面直线磨削
    超声振动方向纵扭复合振动
    超声振动条件超声频率自动扫频范围20 ~30 kHz,
    振幅0 ~10 μm可调
    纵扭转换比约为25%
    下载: 导出CSV

    表  2  单因素磨削试验参数

    参数数值
    主轴转速n/(r·min−1)16000/18000/20000/22000
    单次磨削深度ap/μm5
    进给速度Vx/(mm·min−1)80/100/120/140
    超声输出振幅/μmA=5,B=1.25
    动态谐振频率/Hz20817~21135
    下载: 导出CSV
  • [1] 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19): 3-21 doi: 10.3901/JME.2017.19.003

    Feng P F, Wang J J, Zhang J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering, 2017, 53(19): 3-21 (in Chinese doi: 10.3901/JME.2017.19.003
    [2] Thoe T B, Aspinwall D K, Wise M L H. Review on ultrasonic machining[J]. International Journal of Machine Tools and Manufacture, 1998, 38(4): 239-255 doi: 10.1016/S0890-6955(97)00036-9
    [3] Zhang C L, Zhang J F, Feng P F. Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(1-4): 161-170 doi: 10.1007/s00170-013-5004-z
    [4] 李勋, 张德远. 不分离型超声椭圆振动切削试验研究[J]. 机械工程学报, 2010, 46(19): 177-182 doi: 10.3901/JME.2010.19.177

    Li X, Zhang D Y. Experimental study on the unseparated ultrasonic elliptical vibration cutting[J]. Journal of Mechanical Engineering, 2010, 46(19): 177-182 (in Chinese doi: 10.3901/JME.2010.19.177
    [5] Xiao X Z, Zheng K, Liao W H, et al. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2016, 104: 58-67 doi: 10.1016/j.ijmachtools.2016.01.004
    [6] Meng H, Zheng K, Xiao X Z, et al. Investigation on feed direction cutting force in ultrasonic vibration-assisted grinding of dental ceramics[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(19): 3493-3503 doi: 10.1177/0954406216650915
    [7] Zheng K, Liao W H, Sun L J, et al. Investigation on grinding temperature in ultrasonic vibration-assisted grinding of zirconia ceramics[J]. Machining Science and Technology, 2019, 23(4): 612-628 doi: 10.1080/10910344.2019.1575405
    [8] Yang Z C, Zhu L D, Lin B, et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding[J]. Ceramics International, 2019, 45(7): 8873-8889 doi: 10.1016/j.ceramint.2019.01.216
    [9] Yang Z C, Zhu L D, Ni C B, et al. Investigation of surface topography formation mechanism based on abrasive-workpiece contact rate model in tangential ultrasonic vibration-assisted CBN grinding of ZrO2 ceramics[J]. International Journal of Mechanical Sciences, 2019, 155: 66-82 doi: 10.1016/j.ijmecsci.2019.02.031
    [10] Zhu L D, Ni C B, Yang Z C, et al. Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti-6Al-4V[J]. Precision Engineering, 2019, 57: 229-243 doi: 10.1016/j.precisioneng.2019.04.010
    [11] Li Z H, Zheng K, Liao W H, et al. Surface characterization of zirconia ceramics in ultrasonic vibration-assisted grinding[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(8): 379 doi: 10.1007/s40430-018-1296-0
    [12] Zahedi A, Tawakoli T, Akbari J. Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina–zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2015, 90: 16-28 doi: 10.1016/j.ijmachtools.2014.12.002
    [13] Tawakoli T, Akbari J, Zahedi A. Ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics[C]//Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition. California, USA: ASME, 2013: 206-213.
    [14] Zahedi A, Tawakoli T, Azarhoushang B, et al. Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 1479-1491 doi: 10.1007/s00170-014-6383-5
    [15] Alkawaz M H, Hafiz M S A, Kasim M S, et al. Study of dental zirconia milling using rotary ultrasonic Ma-Chining[J]. International Journal of Engineering & Technology, 2018, 7(4-16): 181-183
    [16] Das S, Doloi B, Bhattacharyya B. Fabrication of stepped hole on zirconia bioceramics by ultrasonic machining[J]. Machining Science and Technology, 2016, 20(4): 681-700 doi: 10.1080/10910344.2016.1224016
    [17] Bhosale S B, Pawade R S, Brahmankar P K. Effect of process parameters on MRR, TWR and surface topography in ultrasonic machining of alumina-zirconia ceramic composite[J]. Ceramics International, 2014, 40(8): 12831-12836 doi: 10.1016/j.ceramint.2014.04.137
    [18] 皮钧. 圆环斜槽传振杆的纵扭振动转换[J]. 机械工程学报, 2008, 44(5): 242-248 doi: 10.3321/j.issn:0577-6686.2008.05.041

    Pi J. Longitudinal-torsional vibration converter of cylinder with multiple diagonal slits[J]. Chinese Journal of Mechanical Engineering, 2008, 44(5): 242-248 (in Chinese doi: 10.3321/j.issn:0577-6686.2008.05.041
    [19] 沈学会. 超声振动辅助铣削加工技术及机理研究[D]. 济南: 山东大学, 2011: 16-18.

    Shen X H. Study on the technology and mechanism of ultrasonic vibration assisted milling[D]. Ji'nan: Shandong University, 2011: 16-18 (in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  87
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-07
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回