留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三稳态驰振能量捕获器发电性能研究

谭红波 刘丽兰 薛白鸽

谭红波,刘丽兰,薛白鸽. 三稳态驰振能量捕获器发电性能研究[J]. 机械科学与技术,2020,39(10):1539-1546 doi: 10.13433/j.cnki.1003-8728.20190294
引用本文: 谭红波,刘丽兰,薛白鸽. 三稳态驰振能量捕获器发电性能研究[J]. 机械科学与技术,2020,39(10):1539-1546 doi: 10.13433/j.cnki.1003-8728.20190294
Tan Hongbo, Liu Lilan, Xue Baige. Exploring Power Generation Performance of Tristable Galloping Vibration Energy Harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1539-1546. doi: 10.13433/j.cnki.1003-8728.20190294
Citation: Tan Hongbo, Liu Lilan, Xue Baige. Exploring Power Generation Performance of Tristable Galloping Vibration Energy Harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1539-1546. doi: 10.13433/j.cnki.1003-8728.20190294

三稳态驰振能量捕获器发电性能研究

doi: 10.13433/j.cnki.1003-8728.20190294
基金项目: 国家自然科学基金项目(11572243)资助
详细信息
    作者简介:

    谭红波(1995−),硕士研究生,研究方向为机械动力学、轴承故障诊断, 578439369@qq.com

    通讯作者:

    刘丽兰,副教授,硕士生导师,liulilans@163.com

  • 中图分类号: O322

Exploring Power Generation Performance of Tristable Galloping Vibration Energy Harvester

  • 摘要: 将三稳态振动模式引入到流体驰振能量捕获器中,提出了一种用于流致振动环境下的三稳态压电悬臂梁驰振能量捕获器,建立了其力学模型及动力学方程。利用数值仿真比较了双稳态和三稳态驰振系统的动力学特性和发电性能,证明了在较低流速下三稳态系统更容易发生大幅运动,发电性能更好。进一步研究了三稳态系统参数对驰振能量捕获器发电性能的影响。
  • 图  1  三稳态驰振能量捕获器示意图

    图  2  三稳态驰振能量捕获器力学模型及外部电路

    图  3  无量纲势能函数图对比

    图  4  ${A^*}$${U_r}$变化响应

    图  5  不同${U_r}$时的相图和瞬时电压图

    图  6  峰值电压

    图  7  平均功率

    图  8  不同$\mu $下的势能函数

    图  9  不同$\mu $${A^*}$${U_r}$变化曲线

    图  10  不同$\mu $时系统的相图

    图  11  不同$\mu $下峰值电压随${U_r}$的变化响应

    图  12  不同$\mu $P${U_r}$的变化响应

    表  1  能量捕获器的仿真参数

    参数数值参数数值
    有效质量 $M $ $0.52 \;{\rm kg}$ 横流尺寸 $D$ $0.05\;{\rm m}$
    阻尼比 ${\zeta _m}$ 0.003 有效电容 ${C_p}$ 187 nF
    机电耦合系数 $\theta $ $1.9 \times {10^{ - 4}}\;{\rm N/V}$ ${a_1}$ 2.5
    阻流体长度 $L$ $0.1\;{\rm m}$ ${a_3}$ 130
    水的密度 $\rho $ $1\;000\;{\rm kg/{m^3}}$ $R$ $2.7 \times {10^5}\;\Omega$
    下载: 导出CSV
  • [1] Magagna D, Uihlein A. Ocean energy development in Europe: current status and future perspectives[J]. International Journal of Marine Energy, 2015, 11: 84-104 doi: 10.1016/j.ijome.2015.05.001
    [2] Zhang K M, Wen Z G. Review and challenges of policies of environmental protection and sustainable development in China[J]. Journal of Environmental Management, 2008, 88(4): 1249-1261 doi: 10.1016/j.jenvman.2007.06.019
    [3] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 2018, 16(1): 176-188

    Lian J J, Yan X, Liu F. Development and prospect of study on the energy harness of flow-induced motion[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(1): 176-188 (in Chinese
    [4] Khalak A, Williamson C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5): 455-472 doi: 10.1006/jfls.1996.0031
    [5] Bearman P W. Vortex shedding from oscillating bluff bodies[J]. Annual Review of Fluid Mechanics, 2012, 16: 195-222
    [6] Khalak A, Williamson C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures, 1997, 11(8): 973-982 doi: 10.1006/jfls.1997.0110
    [7] Govardhan R, Williamson C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420: 85-130 doi: 10.1017/S0022112000001233
    [8] Williamson C H K, Govardhan R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36: 413-455 doi: 10.1146/annurev.fluid.36.050802.122128
    [9] Dai H L, Abdelkefi A, Yang Y, et al. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations[J]. Applied Physics Letters, 2016, 108(5): 053902 doi: 10.1063/1.4941546
    [10] Abdelkefi A, Scanlon J M, McDowell E, et al. Performance enhancement of piezoelectric energy harvesters from wake galloping[J]. Applied Physics Letters, 2013, 103(3): 033903 doi: 10.1063/1.4816075
    [11] Molino-Minero-Re E, Carbonell-Ventura M, Fisac-Fuentes C, et al. Piezoelectric energy harvesting from induced vortex in water flow[C]//Proceedings of 2012 Instrumentation and Measurement Technology Conference Proceedings. Graz, Austria: IEEE, 2012: 624-627.
    [12] Sun H, Kim E S, Nowakowski G, et al. Effect of mass-ratio, damping, and stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions[J]. Renewable Energy, 2016, 99: 936-959 doi: 10.1016/j.renene.2016.07.024
    [13] Blackburn H M, Govardhan R N, Williamson C H K. A complementary numerical and physical investigation of vortex-induced vibration[J]. Journal of Fluids and Structures, 2001, 15(3-4): 481-488 doi: 10.1006/jfls.2000.0345
    [14] Bernitsas M M. Harvesting energy by flow included motions[M]//Dhanak M R, Xiros N I. Springer Handbook of Ocean Engineering. Cham: Springer International Publishing, 2016.
    [15] Vicente-Ludlam D, Barrero-Gil A, Velazquez A. Enhanced mechanical energy extraction from transverse galloping using a dual mass system[J]. Journal of Sound and Vibration, 2015, 339: 290-303 doi: 10.1016/j.jsv.2014.11.034
    [16] Zhang B S, Wang K H, Song B W, et al. Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion[J]. Energy, 2018, 165: 949-964 doi: 10.1016/j.energy.2018.09.138
    [17] Arrieta A F, Hagedorn P, Erturk A, et al. A piezoelectric bistable plate for nonlinear broadband energy harvesting[J]. Applied Physics Letters, 2010, 97(10): 104102 doi: 10.1063/1.3487780
    [18] 孙舒. 双稳态压电悬臂梁发电系统的动力学特性研究[D]. 天津: 天津大学, 2013.

    Sun S. Research on dynamic characteristics of bistable piezoelectric cantilever power generation systems[D]. Tianjin: Tianjin University, 2013 (in Chinese).
    [19] Cao J Y, Zhou S X, Wang W, et al. Influence of potential well depth on nonlinear tristable energy harvesting[J]. Applied Physics Letters, 2015, 106(17): 173903 doi: 10.1063/1.4919532
    [20] Zhou S X, Cao J Y, Inman D J, et al. Broadband tristable energy harvester: modeling and experiment verification[J]. Applied Energy, 2014, 133: 33-39 doi: 10.1016/j.apenergy.2014.07.077
    [21] Zhou Z Y, Qin W Y, Zhu P. Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester[J]. Sensors and Actuators A: Physical, 2016, 243: 151-158 doi: 10.1016/j.sna.2016.03.024
    [22] Alhadidi A H, Daqaq M F. A broadband Bi-stable flow energy harvester based on the wake-galloping phenomenon[J]. Applied Physics Letters, 2016, 109(3): 033904 doi: 10.1063/1.4959181
    [23] Bibo A, Alhadidi A H, Daqaq M F. Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters[J]. Journal of Applied Physics, 2015, 117(4): 045103 doi: [doi:10.1063/1.4906463]
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  60
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回