留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种模拟舰船表面破坏的冲蚀、空蚀和腐蚀交互磨损试验研究

唐蒲华 梁亮 庞佑霞 朱宗铭 唐勇

唐蒲华, 梁亮, 庞佑霞, 朱宗铭, 唐勇. 一种模拟舰船表面破坏的冲蚀、空蚀和腐蚀交互磨损试验研究[J]. 机械科学与技术, 2019, 38(12): 1960-1965. doi: 10.13433/j.cnki.1003-8728.20190222
引用本文: 唐蒲华, 梁亮, 庞佑霞, 朱宗铭, 唐勇. 一种模拟舰船表面破坏的冲蚀、空蚀和腐蚀交互磨损试验研究[J]. 机械科学与技术, 2019, 38(12): 1960-1965. doi: 10.13433/j.cnki.1003-8728.20190222
Tang Puhua, Liang Liang, Pang Youxia, Zhu Zongming, Tang Yong. Experimental Study on Interactive Wears of Abrasion, Cavitation and Corrosion for Simulating Surface Damage of Ships[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1960-1965. doi: 10.13433/j.cnki.1003-8728.20190222
Citation: Tang Puhua, Liang Liang, Pang Youxia, Zhu Zongming, Tang Yong. Experimental Study on Interactive Wears of Abrasion, Cavitation and Corrosion for Simulating Surface Damage of Ships[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1960-1965. doi: 10.13433/j.cnki.1003-8728.20190222

一种模拟舰船表面破坏的冲蚀、空蚀和腐蚀交互磨损试验研究

doi: 10.13433/j.cnki.1003-8728.20190222
基金项目: 

湖南省教育厅科学研究项目 18A372

国家自然科学基金项目 51875051

长沙市科技计划项目 kc1809014

长沙市科技计划项目 k1705011

湖南省自然科学基金项目 2019JJ40324

详细信息
    作者简介:

    唐蒲华(1973-), 讲师, 博士研究生, 研究方向为流体流场仿真及液压系统, tphtom@126.com

    通讯作者:

    梁亮, 教授, 博士, liang@ccsu.edu.cn

  • 中图分类号: TH117.1

Experimental Study on Interactive Wears of Abrasion, Cavitation and Corrosion for Simulating Surface Damage of Ships

  • 摘要: 海洋装备表面材料破坏的主要原因是冲蚀、空蚀和腐蚀及其交互作用,而量化其表面磨损程度对海洋装备材料和结构的设计具有重要意义。冲蚀、空蚀和腐蚀交互磨损试验台是研究海洋装备表面材料破坏的有效工具。通过流场数值对比分析,在研究冲蚀和空蚀交互作用的基础上,优化设计了冲蚀、空蚀和电化学腐蚀交互磨损综合试验台,完成了人造海水中,不同材料的舰船工作表面受到高速流体冲击产生的冲蚀、空蚀和电化学腐蚀交互磨损试验。结果表明:同一种金属材料冲蚀、空蚀和电化学腐蚀交互作用的失重量大于冲蚀、空蚀和自然腐蚀交互作用的失重量,高强度塑性金属材料的腐蚀磨损较为严重,其三者交互作用的磨损程度大于低强度塑性金属材料。
  • 图  1  冲射结构设计方案

    图  2  高压喷管方式流体速度等值线

    图  3  沙浆泵直接喷射方式流体速度等值线

    图  4  冲蚀空蚀腐蚀室局部放大图

    图  5  冲蚀、空蚀和腐蚀交互磨损试验台系统工作原理简图

    图  6  冲蚀和空蚀交互作用数值计算网格图

    图  7  冲蚀和空蚀交互作用下试件工作区域压力等值线图

    图  8  冲蚀和空蚀交互作用下试件工作区域汽相体积比等值线图

    图  9  冲蚀和空蚀交互作用下试件工作区域沙浆速度矢量图

    图  10  冲蚀、空蚀和腐蚀交互磨损试验台

    图  11  不同材料试件累积失重量曲线

  • [1] Rajahram S S, Harvey T J, Wood R J K. Erosion-corrosion resistance of engineering materials in various test conditions[J]. Wear, 2009, 267(1-4):244-254 doi: 10.1016/j.wear.2009.01.052
    [2] Zu J B, Hutchings I M, Burstein G T. Design of a slurry erosion test rig[J]. Wear, 1990, 140(2):331-344 doi: 10.1016/0043-1648(90)90093-P
    [3] Saleh B, Abouel-Kasem A, Ahmed S M. Effect of surface properties modification on slurry erosion-corrosion resistance of AISI 5117 steel[J]. Journal of Tribology, 2015, 137(3):031105 doi: 10.1115/1.4029997
    [4] Malka R, Nešić S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow[J]. Wear, 2007, 262(7-8):791-799 doi: 10.1016/j.wear.2006.08.029
    [5] Tian H H, Addie G R, Visintainer R J. Erosion-corrosion performance of high-Cr cast iron alloys in flowing liquid-solid slurries[J]. Wear, 2009, 267(11):2039-2047 doi: 10.1016/j.wear.2009.08.007
    [6] Wang L Q, Qiu N, Hellmann D H, et al. An experimental study on cavitation erosion-corrosion performance of ANSI 1020 and ANSI 4135 steel[J]. Journal of Mechanical Science and Technology, 2016, 30(2):533-539 doi: 10.1007/s12206-016-0106-9
    [7] Song Q N, Zheng Y G, Ni D R, et al. Corrosion and cavitation erosion behaviors of friction stir processed Ni-Al bronze:effect of processing parameters and position in the stirred zone[J]. Corrosion, 2014, 70(3):261-270 doi: 10.5006/1070
    [8] Aperador W, Delgado E, Duque J. Evaluation of the corrosion erosion by cavitation in[TiN/ZrN] multilayers coatings[J]. International Journal of Electrochemical Science, 2014, 9(7):3670-3679
    [9] Auret J G, Damm O F R A, Wright G J, et al. The pressure and velocity dependence of flow-type cavitation erosion[J]. Wear, 1993, 170(2):185-190 doi: 10.1016/0043-1648(93)90239-I
    [10] Hsu R W W, Yang C C, Huang C A, et al. Electrochemical corrosion properties of Ti-6Al-4V implant alloy in the biological environment[J]. Materials Science and Engineering:A, 2004, 380(1-2):100-109 doi: 10.1016/j.msea.2004.03.069
    [11] Pang Y, Liang L, Tang Y, et al. Numerical analysis and experimental investigation of combined erosion of cavitation and sandy water erosion[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2016, 230(1):31-39 doi: 10.1177/1350650115587335
    [12] Wang Q Y, Bai S L, Liu Z D. Surface characterization and erosion-corrosion behavior of Q235 steel in dynamic flow[J]. Tribology Letters, 2014, 53(1):271-279 doi: 10.1007/s11249-013-0265-0
    [13] Barik R C, Wharton J A, Wood R J K, et al. Electro-mechanical interactions during erosion-corrosion[J]. Wear, 2009, 267(11):1900-1908 doi: 10.1016/j.wear.2009.03.011
    [14] Ryl J, Wysocka J, Slepski P, et al. Instantaneous impedance monitoring of synergistic effect between cavitation erosion and corrosion processes[J]. Electrochimica Acta, 2016, 203:388-395 doi: 10.1016/j.electacta.2016.01.216
    [15] Gou W J, Zhang H, Li H P, et al. Effects of silica sand on synergistic erosion caused by cavitation, abrasion, and corrosion[J]. Wear, 2018, 412-413:120-126 doi: 10.1016/j.wear.2018.07.023
    [16] Singh N, Banerjee S, Parkash O, et al. Tribological and corrosion behavior of (100-x)(Fe70Ni30)-(x)ZrO2 composites synthesized by powder metallurgy[J]. Materials Chemistry and Physics, 2018, 205:261-268 doi: 10.1016/j.matchemphys.2017.11.031
    [17] Zheng X Q, Liu Y. Slurry erosion-corrosion wear behavior in SiC-containing NaOH solutions of Mo2NiB2 cermets prepared by reactive sintering[J]. International Journal of Refractory Metals and Hard Materials, 2019, 78:193-200 doi: 10.1016/j.ijrmhm.2018.09.017
    [18] Hong S, Wu Y P, Gao W W, et al. Slurry erosion-corrosion resistance and microbial corrosion electrochemical characteristics of HVOF sprayed WC-10Co-4Cr coating for offshore hydraulic machinery[J]. International Journal of Refractory Metals and Hard Materials, 2018, 74:7-13 doi: 10.1016/j.ijrmhm.2018.02.019
    [19] 庞佑霞, 朱宗铭, 梁亮, 等.多种材料的冲蚀与空蚀交互磨损试验装置的研制及应用[J].机械科学与技术, 2012, 31(1):1-3 doi: 10.3969/j.issn.1672-1616.2012.01.001

    Pang Y X, Zhu Z M, Liang L, et al. Development and application on wearing experimental device of multi-material interactive erosion and cavitations[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(1):1-3(in Chinese) doi: 10.3969/j.issn.1672-1616.2012.01.001
  • 加载中
图(11)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  241
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 刊出日期:  2019-12-05

目录

    /

    返回文章
    返回