留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摆动扭冲工具冲击特性仿真分析

叶哲伟 程成 刘志杨

叶哲伟, 程成, 刘志杨. 摆动扭冲工具冲击特性仿真分析[J]. 机械科学与技术, 2020, 39(4): 531-538. doi: 10.13433/j.cnki.1003-8728.20190181
引用本文: 叶哲伟, 程成, 刘志杨. 摆动扭冲工具冲击特性仿真分析[J]. 机械科学与技术, 2020, 39(4): 531-538. doi: 10.13433/j.cnki.1003-8728.20190181
Ye Zhewei, Cheng Cheng, Liu Zhiyang. Simulation Analysis on Impact Characteristics of Swing Torsional Punching Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 531-538. doi: 10.13433/j.cnki.1003-8728.20190181
Citation: Ye Zhewei, Cheng Cheng, Liu Zhiyang. Simulation Analysis on Impact Characteristics of Swing Torsional Punching Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 531-538. doi: 10.13433/j.cnki.1003-8728.20190181

摆动扭冲工具冲击特性仿真分析

doi: 10.13433/j.cnki.1003-8728.20190181
详细信息
    作者简介:

    叶哲伟(1981-), 讲师, 博士, 研究方向为井下工具、油气钻采装备研究, ye_zhewei@yeah.net

  • 中图分类号: TE921

Simulation Analysis on Impact Characteristics of Swing Torsional Punching Tool

  • 摘要: 针对现有液动式、回转式扭冲工具存在的不足,提出一种集成于螺杆马达的摆动扭冲工具,利用转子公转驱动摆锤实现周期性扭转冲击。对冲击模块进行运动分析与冲击特性仿真,得到了接触刚度、偏心距、转子转速、头数对转子反扭矩与冲击模块输出扭矩峰值的影响规律。引入冲击扭矩峰值波动率和平均冲击扭矩峰值来评价转子所受反扭矩大小与冲击模块输出扭矩峰值平稳性。结果表明:影响参数取优解时,作用在转子上的反扭矩小;冲击模块输出扭矩峰值平稳,有效辅助破岩冲击力矩大。
  • 图  1  摆动扭冲工具结构

    图  2  摆动扭冲工具一个周期运动过程

    图  3  K2不变, 改变K1时, C1C2冲击力矩峰值变化

    图  4  K2不变, C1C2处冲击扭矩峰值波动率

    图  5  K1不变、改变K2时, C1C2冲击力矩峰值变化

    图  6  K1不变, C1C2处冲击扭矩峰值波动率

    图  7  刚度取优解时C1C2处冲击力矩峰值

    图  8  e=6 mm、6.5 mm时C1C2处冲击力矩峰值

    图  9  e=6 mm时, 不同ngC1C2TaW

    图  10  e=6.5 mm时, 不同ngC1C2TaW

    表  1  三维模型参数

    参数名称 数值及单位
    转子半径R 39 mm
    椭圆长半径a 47 mm
    椭圆长半径b 45 mm
    摆锤泊松比μ1 0.295
    摆锤弹性模量E1 2.09×105 N/mm2
    活页环泊松比μ2 0.28
    活页环弹性模量E2 2.12×105 N/mm2
    转子泊松比μ3 0.286
    转子弹性模量E3 2.13×105 N/mm2
    下载: 导出CSV

    表  2  冲击力矩峰值影响参数初始值

    参数名称 数值及单位
    接触刚度K1 7.0×105 N/mm
    接触刚度K2 1.0×105 N/mm
    转子偏心距e 6 mm
    转速n 150 r/min
    头数N 5
    下载: 导出CSV

    表  3  改变K1, C1C2处冲击扭矩峰值波动率

    K1/(N·mm-1) W1 W2
    1.0×104 5.52 2.92
    5.0×104 8.88 3.25
    1.0×105 12.38 4.37
    7.0×105 7.25 2.44
    下载: 导出CSV

    表  4  改变K2时, C1C2处冲击扭矩峰值波动率

    K2/(N·mm-1) W1 W2
    1.0×104 5.52 2.92
    2.0×104 8.88 3.25
    5.0×104 12.38 4.37
    1.0×105 7.25 2.44
    下载: 导出CSV

    表  5  刚度取优解时C1C2处冲击扭矩峰值波动率

    接触时间/s W1 W2
    0~3 3.19 2.65
    0.45~3 3.18 0.03
    下载: 导出CSV

    表  6  不同e值时C2Ta2W2

    e/mm Ta2/(N·mm) W2
    6 321.53 0.03
    6.5 722.42 0.01
    7 78.04 18.13
    7.5 7.5 20.67
    8 33.13 49.06
    下载: 导出CSV

    表  7  不同ngC1C2TaW

    e/mm ng/(r·min-1) Ta1/(N·m) W1 Ta2/(N·m) W2
    6 600 52.98 1.36 417.60 0.02
    750 19.04 3.18 321.53 0.03
    900 18.03 6.70 314.46 2.98
    1 200 15.96 8.75 0 /
    6.5 600 15.10 2.28 248.73 3.15
    750 69.34 2.63 722.42 0.01
    900 43.04 7.62 470.96 2.95
    1 200 34.38 8.45 0 /
    下载: 导出CSV

    表  8  影响参数优解

    K1/(N·mm-1) K2/(N·mm-1) e/mm ng/(r·min-1)
    5.0×103 1.0×104 6 600
    750
    6.5 750
    下载: 导出CSV
  • [1] 祝效华, 刘伟吉.旋冲钻井技术的破岩及提速机理[J].石油学报, 2018, 39(2):216-222 http://d.old.wanfangdata.com.cn/Periodical/syxb201802010

    Zhu X H, Liu W J. Rock breaking and ROP rising mechanism of rotary-percussive drilling technology[J]. Acta Petrolei Sinica, 2018, 39(2):216-222(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/syxb201802010
    [2] Tang L P, He W, Zhu X H. The effect of high-frequency torsional impacts on the dynamic response of a drill string in a stick state[J]. Advances in Mechanical Engineering, 2019, 11(3):1-12
    [3] 景英华, 袁鑫伟, 姜磊, 等.高速旋转冲击钻井破岩数值模拟及现场实验[J].中国石油大学学报, 2019, 43(1):75-80 http://d.old.wanfangdata.com.cn/Periodical/sydxxb201901009

    Jing Y H, Yuan X W, Jiang L, et al. Numerical simulation and field experimental study on rock breaking in high speed rotating percussion drilling[J]. Journal of China University of Petroleum, 2019, 43(1):75-80(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/sydxxb201901009
    [4] 李思琪, 毕福庆, 李玮, 等.扭转冲击钻井稳态钻进动力学特性及现场应用[J].中国石油大学学报, 2019, 43(2):97-104 http://d.old.wanfangdata.com.cn/Periodical/sydxxb201902013

    Li S Q, Bi F Q, Li W, et al. Dynamic characteristics of steady torsional impact drilling and its field application[J]. Journal of China University of Petroleum, 2019, 43(2):97-104(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/sydxxb201902013
    [5] Zhang L C, Zhang C L, Horng J H, et al. Application research on TorkBuster in well Yashen 1 of Yumen oilfield[J]. Advanced Materials Research, 2012, 591-593:484-487 doi: 10.4028/www.scientific.net/AMR.591-593.484
    [6] 周祥林, 张金成, 张东清.TorkBuster扭力冲击器在元坝地区的试验应用[J].钻采工艺, 2012, 35(2):15-17 http://d.old.wanfangdata.com.cn/Periodical/zcgy201202005

    Zhou X L, Zhang J C, Zhang D Q. Experimental application of TorkBuster torsional impactor in Yuanba region[J]. Drilling & Production Technology, 2012, 35(2):15-17(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zcgy201202005
    [7] 李玮, 何选蓬, 闫铁, 等.近钻头扭转冲击器破岩机理及应用[J].石油钻采工艺, 2014, 36(5):1-4 http://d.old.wanfangdata.com.cn/Periodical/syzcgy201405001

    Li W, He X P, Yan T, et al. Rock fragmentation mechanism and application of near-bit torsion impacter[J]. Oil Drilling & Production Technology, 2014, 36(5):1-4(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/syzcgy201405001
    [8] 田家林, 杜凡, 朱永豪, 等.扭力冲击器的动力特性研究[J].系统仿真学报, 2018, 30(2):579-586 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201802026

    Tian J L, Du F, Zhu Y H, et al. Dynamic characteristics research of torsional vibration generator[J]. Journal of System Simulation, 2018, 30(2):579-586(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201802026
    [9] 卢玲玲, 何东升, 张伟东, 等.扭转冲击器研究及应用[J].石油矿场机械, 2015, 44(6):82-85 http://d.old.wanfangdata.com.cn/Periodical/sykcjx201506020

    Lu L L, He D S, Zhang W D, et al. Research and application prospect of torsional impact hammer[J]. Oil Field Equipment, 2015, 44(6):82-85(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/sykcjx201506020
    [10] 田家林, 吴纯明, 杨琳, 等.扭转振动发生器的工作原理及其运动特性分析[J].机械科学与技术, 2017, 36(9):1333-1339 doi: 10.13433/j.cnki.1003-8728.2017.0904

    Tian J L, Wu C M, Yang L, et al. Research on operation principle and kinematics of torsional vibration generator[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9):1333-1339(in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0904
    [11] 刘才山, 陈滨.多柔体系统碰撞动力学研究综述[J].力学进展, 2000, 30(1):7-14 http://d.old.wanfangdata.com.cn/Periodical/lxjz200001002

    Liu C S, Chen B. A global review for the impact dynamic research of flexible multibody systems[J]. Advances in Mechanics, 2000, 30(1):7-14(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lxjz200001002
    [12] 安雪斌, 潘尚峰.多体系统动力学仿真中的接触碰撞模型分析[J].计算机仿真, 2008, 25(10):98-101 http://d.old.wanfangdata.com.cn/Periodical/jsjfz200810026

    An X B, Pan S F. Analysis of contact model in multi-body system dynamic simulation[J]. Computer Simulation, 2008, 25(10):98-101(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjfz200810026
    [13] 刘鹏, 李万莉.基于弹簧阻尼模型的共振破碎机碰撞力分析[J].建筑机械化, 2013, 34(10):49-51 http://d.old.wanfangdata.com.cn/Periodical/jzjxh201310040

    Liu P, Li W L. Analysis of crash force of the model based on the spring damping resonance crusher[J]. Construction Mechanization, 2013, 34(10):49-51(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jzjxh201310040
    [14] 周志才, 吴新跃, 张文群, 等.基于弹簧阻尼模型的碰撞动力学研究[J].湖北工业大学学报, 2012, 27(1):125-128 http://d.old.wanfangdata.com.cn/Periodical/hubeigxyxb201201032

    Zhou Z C, Wu X Y, Zhang W Q, et al. Study on contact dynamics based spring-damper model[J]. Journal of Hubei University of Technology, 2012, 27(1):125-128(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hubeigxyxb201201032
    [15] 秦志英, 陆启韶.基于恢复系数的碰撞过程模型分析[J].动力学与控制学报, 2006, 4(4):294-298 http://d.old.wanfangdata.com.cn/Periodical/dlxykzxb200604002

    Qin Z Y, Lu Q S. Analysis of impact process model based on restitution coefficien[J]. Journal of Dynamics and Control, 2006, 4(4):294-298(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dlxykzxb200604002
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  44
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-24
  • 刊出日期:  2020-04-05

目录

    /

    返回文章
    返回