留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层熔丝增材数值模拟及残余应力控制研究

权国政 赵江 施瑞菊 刘乔

权国政, 赵江, 施瑞菊, 刘乔. 多层熔丝增材数值模拟及残余应力控制研究[J]. 机械科学与技术, 2020, 39(4): 623-628. doi: 10.13433/j.cnki.1003-8728.20190176
引用本文: 权国政, 赵江, 施瑞菊, 刘乔. 多层熔丝增材数值模拟及残余应力控制研究[J]. 机械科学与技术, 2020, 39(4): 623-628. doi: 10.13433/j.cnki.1003-8728.20190176
Quan Guozheng, Zhao Jiang, Shi Ruiju, Liu Qiao. Numerical Simulation and Residual Stress Control of Multilayer Fused Additives[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 623-628. doi: 10.13433/j.cnki.1003-8728.20190176
Citation: Quan Guozheng, Zhao Jiang, Shi Ruiju, Liu Qiao. Numerical Simulation and Residual Stress Control of Multilayer Fused Additives[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 623-628. doi: 10.13433/j.cnki.1003-8728.20190176

多层熔丝增材数值模拟及残余应力控制研究

doi: 10.13433/j.cnki.1003-8728.20190176
基金项目: 

重庆市技术创新与应用示范专项产业类重点研发项目 cstc2018jszx-cyzdX0121

国家重点研发计划项目课题 2018YFB1106502

详细信息
    作者简介:

    权国政(1980-), 教授, 博士生导师, 博士后, 研究方向为塑性成形多场多尺度动态耦合模拟, quangz3000@sina.com

  • 中图分类号: TG156

Numerical Simulation and Residual Stress Control of Multilayer Fused Additives

  • 摘要: 在多层熔丝增材过程中,高度集中的瞬时热输入将引发相当大的残余应力和变形,因此,研究其残余应力演变规律将对增材工艺设计意义重大。通过植入可控移动焊接热源程序于ABAQUS中,建立了多层熔丝增材有限元模型,分析了熔丝过程中的温度场和残余应力的演变规律,并研究了各工艺参数对多层熔丝增材残余应力的影响规律。结果表明,在一定范围内,在较高的熔丝线能量、较低的熔丝速度和高的预热温度下,残余应力水平较低。
  • 图  1  三维网格模型

    图  2  双椭球热源模型示意图

    图  3  模型位移边界条件的设定

    图  4  多层熔丝增材制造过程中的温度场分布

    图  5  纵向残余应力

    图  6  横向残余应力

    图  7  纵向残余应力

    图  8  横向残余应力

    图  9  纵向残余应力

    图  10  横向残余应力

    图  11  不同预热温度下纵向残余应力分布云图

    图  12  不同预热温度下横向残余应力分布云图

    图  13  不同预热温度下熔合区附近同一节点热循环曲线对比

    表  1  Q235钢材料性能参数

    温度/℃ 屈服应力/MPa 热膨胀系数/(1/℃) 热导率/(W·(m·℃)-1) 比热/(J·(kg·℃)-1)
    20 298 700 000 1.11×10-5 60 460
    250 229 102 900 1.26×10-5 50 480
    500 80 000 000 1.42×10-5 39 530
    800 50 000 000 1.51×10-5 30 675
    1 000 34 000 000 1.53×10-5 28 670
    1 500 8 000 000 1.62×10-5 50 660
    1 700 5 000 000 1.67×10-5 140 780
    2 500 800 000 1.74×10-5 142 820
    下载: 导出CSV

    表  2  数值模拟工艺参数表

    序号 熔丝线能量/(J·mm-1) 预热温度/℃ 熔丝速度/(mm·s-1)
    1 2 200 20 8
    2 2 200 20 10
    3 2 200 20 12
    4 2 500 20 8
    5 2 800 20 8
    6 2 200 100 8
    7 2 200 200 8
    下载: 导出CSV
  • [1] 王桂兰, 符友恒, 梁立业, 等.电弧微铸轧复合增材新方法制造高强度钢零件[J].热加工工艺, 2015, 44(13):24-26, 34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201513007

    Wang G L, Fu Y H, Liang L Y, et al. New hybrid additive manufacturing method for forming high strength parts by weld-rolling[J]. Hot Working Technology, 2015, 44(13):24-26, 34(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201513007
    [2] 江宏亮, 姚巨坤, 殷凤良.丝材电弧增材制造技术的研究现状与应用[J].热加工工艺, 2018, 47(18):25-29 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201818006

    Jiang H L, Yao J K, Yin F L. Research status and application of wire arc additive manufacturing technology[J]. Hot Working Technology, 2018, 47(18):25-29(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201818006
    [3] Hensel J, Nitschke-Pagel T, Ngoula D T, et al. Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength[J]. Engineering Fracture Mechanics, 2018, 198:123-141 doi: 10.1016/j.engfracmech.2017.10.024
    [4] 梁行, 姜云禄, 陈怀宁, 等.残余应力对薄板激光搭接接头力学性能的影响[J].焊接学报, 2017, 38(10):112-116 doi: 10.12073/j.hjxb.20170301001

    Liang H, Jiang Y L, Chen H N, et al. Effect of residual stress on mechanical properties of sheet laser overlap welding joints[J]. Transactions of the China Welding Institution, 2017, 38(10):112-116(in Chinese) doi: 10.12073/j.hjxb.20170301001
    [5] 冯艳.焊接残余应力对钢结构性能的影响分析[J].中国高新技术企业, 2017(9):80-81, 292 http://d.old.wanfangdata.com.cn/Periodical/jzgcjsysj2017213783

    Feng Y. Analysis of the effect of welding residual stress on the performance of steel structures[J]. China High-Tech Enterprises, 2017(9):80-81, 292(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jzgcjsysj2017213783
    [6] BóžciŽ, Schmauder S, Wolf H. The influence of residual stresses on fatigue crack growth rate in stiffened panels[C]//Proceedings of the 2nd Mediterranean Conference & New Challenges on Heat Treatment and Surface Engineering. Croatia: Croatian Society for Heat Treatment and Surface Engineering, 2013
    [7] 何柏林, 金辉, 张枝森, 等.SMA490BW钢对接接头高周疲劳性能的机理探究[J].材料导报, 2018, 32(12):2008-2014 doi: 10.11896/j.issn.1005-023X.2018.12.013

    He B L, Jin H, Zhang Z S, et al. Mechanism of improving the high cycle fatigue property of SMA490BW steel butt joint[J]. Materials Review, 2018, 32(12):2008-2014(in Chinese) doi: 10.11896/j.issn.1005-023X.2018.12.013
    [8] Branco C M, Infante V, Baptista R. Fatigue behaviour of welded joints with cracks, repaired by hammer peening[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(9):785-798
    [9] Wu C B, Kim J W. Analysis of welding residual stress formation behavior during circumferential TIG welding of a pipe[J]. Thin-Walled Structures, 2018, 132:421-430 doi: 10.1016/j.tws.2018.09.020
    [10] Chang K H, Lee C H. Behaviour of stresses in circumferential butt welds of steel pipe under superimposed axial tension loading[J]. Materials and Structures, 2009, 42(6):791-801 doi: 10.1617/s11527-008-9424-4
    [11] Hacini L, Van Lê N, Bocher P. Effect of impact energy on residual stresses induced by hammer peening of 304L plates[J]. Journal of Materials Processing Technology, 2008, 208(1-3):542-548 doi: 10.1016/j.jmatprotec.2008.01.025
    [12] Kuo C M, Yang C H. Comparison of residual stress in relaxed and non-relaxed weldments of steel plates[J]. International Journal of Steel Structures, 2016, 16(1):91-97 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=112ba688eb844a38a712d1d91a324ea4
    [13] 张勇, 綦秀玲.LD10薄板随焊锤击工艺的有限元分析[J].热加工工艺, 2012, 41(5):161-163 doi: 10.3969/j.issn.1001-3814.2012.05.055

    Zhang Y, Qi X L. Finite element analysis of LD10 welding with hammering[J]. Hot Working Technology, 2012, 41(5):161-163(in Chinese) doi: 10.3969/j.issn.1001-3814.2012.05.055
    [14] Dong Y, Hong J K, Tsai C. Finite element modeling of residual steresses in austenitic stainless steel pipe girth welds[J]. Welding Journal, 1997, 76(10):442-449
    [15] Suominen L, Khurshid M, Parantainen J. Residual stresses in welded components following post-weld treatment methods[J]. Procedia Engineering, 2013, 66:181-191 doi: 10.1016/j.proeng.2013.12.073
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  55
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-20
  • 刊出日期:  2020-04-05

目录

    /

    返回文章
    返回