留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DP-B样条移动机器人路径光滑算法

姜媛媛 陶德俊 时美乐 刘延彬

姜媛媛, 陶德俊, 时美乐, 刘延彬. DP-B样条移动机器人路径光滑算法[J]. 机械科学与技术, 2020, 39(4): 554-560. doi: 10.13433/j.cnki.1003-8728.20190157
引用本文: 姜媛媛, 陶德俊, 时美乐, 刘延彬. DP-B样条移动机器人路径光滑算法[J]. 机械科学与技术, 2020, 39(4): 554-560. doi: 10.13433/j.cnki.1003-8728.20190157
Jiang Yuanyuan, Tao Dejun, Shi Meile, Liu Yanbin. Path Smoothing Algorithm of Mobile Robot based on DP-B Spline[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 554-560. doi: 10.13433/j.cnki.1003-8728.20190157
Citation: Jiang Yuanyuan, Tao Dejun, Shi Meile, Liu Yanbin. Path Smoothing Algorithm of Mobile Robot based on DP-B Spline[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 554-560. doi: 10.13433/j.cnki.1003-8728.20190157

DP-B样条移动机器人路径光滑算法

doi: 10.13433/j.cnki.1003-8728.20190157
基金项目: 

安徽省自然科学基金项目 1708085QF135

安徽省高校优秀青年骨干人才国内外访学研修项目 gxfx2017025

安徽省高校省级自然科学研究项目 KJ2017A077

国家自然科学基金项目 51604011

详细信息
    作者简介:

    姜媛媛(1982-), 教授, 博士, 研究方向为模式识别、智能机器人、智能诊断及故障预测, jyyLL672@163.com

  • 中图分类号: TP242.6

Path Smoothing Algorithm of Mobile Robot based on DP-B Spline

  • 摘要: 针对快速扩展随机树算法(RRT)产生的路径冗余点过多与路径转折点较多的问题,提出了一种基于Douglas-Peucker算法及B样条函数的路径光滑算法。首先,利用Douglas-Peucker(DP)算法从RRT算法产生的路径节点中提取出若干节点作为关键路标;然后,采用B样条函数拟合关键路标,得到一条曲率连续的光滑路径,实现规划路径的光滑化。通过在不同环境中进行实验和与其他路径光滑算法实验进行对比,结果表明,该算法能够明显缩短优化路径的路径长度,明显减少优化路径转折次数,大幅度提升优化路径的光滑度,有利于减少机器人在单次航程中的能量消耗,完成更多任务,有效提升机器人的工作效率。
  • 图  1  DP算法提取关键路标示意图

    图  2  B样条拟合曲线示意图

    图  3  DP-B算法实现路径光滑的流程

    图  4  少量障碍物

    图  5  中等障碍物

    图  6  大量障碍物

    图  7  四种算法的对比实验结果

    表  1  传统RRT算法及DP-B算法性能测试对比结果

    地图 RRT路径长度/m DP-B路径长度/m RRT路径节点总数 DP-B关键路标 RRT路径转折次数 DP-B路径转折次数
    图 4 850.90 760.82 41 7 17 5
    图 5 990.50 910.35 50 8 28 6
    图 6 664.10 602.48 33 7 21 5
    下载: 导出CSV

    表  2  四种算法性能测试对比结果

    算法 路径长度/m 转折次数 时间/s
    DP-B 757.27 3 3.06
    Potential 912.92 12 4.67
    GA 844.03 1 14.94
    Fuzzy 808.25 3 5.98
    下载: 导出CSV
  • [1] Tsardoulias E G, Iliakopoulou A, Kargakos A, et al. A review of global path planning methods for occupancy grid maps regardless of obstacle density[J]. Journal of Intelligent & Robotic Systems, 2016, 84(1-4):829-858 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=642e8057c9701f5f593cc79b471f73f8
    [2] Lv T Z, Feng M Y. A smooth local path planning algorithm based on modified visibility graph[J]. Modern Physics Letters B, 2017, 31(19-21):1740091 doi: 10.1142/S0217984917400917
    [3] Lv T Z, Zhao C X, Xia P P. Global path planning based on simultaneous visibility graph construction and A* algorithm[J]. Journal of Nanjing University of Science and Technology, 2017, 41(3):313-321 doi: 10.14177/j.cnki.32-1397n.2017.41.03.007
    [4] Candeloro M, Lekkas A M, Sørensen A J, et al. Continuous curvature path planning using voronoi diagrams and fermat's spirals[J]. IFAC Proceedings Volumes, 2013, 46(33):132-137 doi: 10.3182/20130918-4-JP-3022.00064
    [5] Broutin N, Devillers O, Hemsley R. Efficiently navigating a random delaunay triangulation[J]. Random Structures & Algorithms, 2016, 49(1):95-136 http://cn.bing.com/academic/profile?id=0a61e027fa87fe6a48c386c12ff77673&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Liu J H, Yang J G, Liu H P, et al. An improved ant colony algorithm for robot path planning[J]. Soft Computing, 2017, 21(19):5829-5839 doi: 10.1007/s00500-016-2161-7
    [7] 徐林, 范昕炜.基于改进遗传算法的餐厅服务机器人路径规划[J].计算机应用, 2017, 37(7):1967-1971 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201707026

    Xu L, Fan X W. Path planning for restaurant service robot based on improved genetic algorithm[J]. Journal of Computer Applications, 2017, 37(7):1967-1971(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjyy201707026
    [8] Elbanhawi M, Simic M. Sampling-based robot motion planning:a review[J]. IEEE Access, 2014, 2:56-77 doi: 10.1109/ACCESS.2014.2302442
    [9] Kavraki L E, LaValle S M. Motion planning[M]//Siciliano B, Khatib O. Springer Handbook of Robotics. Cham: Springer, 2016: 139-162
    [10] Kwangjin Y, Jung D, Sukkarieh S. Continuous curvature path-smoothing algorithm using cubic bézier spiral curves for non-holonomic robots[J]. Advanced Robotics, 2013, 27(4):247-258 doi: 10.1080/01691864.2013.755246
    [11] Elbanhawi M, Simic M, Jazar R N. Continuous path smoothing for car-like robots using b-spline curves[J]. Journal of Intelligent & Robotic Systems, 2015, 80(1):23-56 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79ce0a19689795e03dfc48c2e220ff9b
    [12] 张璐, 张国良, 张维平, 等.基于粒子群三次样条优化的局部路径规划方法[J].计算机技术与发展, 2012, 22(11):145-148 http://d.old.wanfangdata.com.cn/Periodical/wjfz201211039

    Zhang L, Zhang G L, Zhang W P, et al. Local path planning algorithm based on particle swarm optimization of cubic splines[J]. Computer Technology and Development, 2012, 22(11):145-148(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wjfz201211039
    [13] 陈呈, 王直.基于改进势场栅格法的全局路径规划与平光滑[J].信息通信, 2018(6):17-20, 23 doi: 10.3969/j.issn.1673-1131.2018.06.005

    Chen C, Wang Z. Global Path planning and smoothing based on improved potential field grid method[J]. Information & Communications, 2018(6):17-20, 23(in Chinese) doi: 10.3969/j.issn.1673-1131.2018.06.005
    [14] LaValle S M. Rapidly-exploring random trees: A new tool for path planning[R]. Ames: Iowa State University, 1998
    [15] Li Y, Cui R X, Li Z J, et al. Neural network approximation based near-optimal motion planning with kinodynamic constraints using RRT[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):8718-8729 doi: 10.1109/TIE.2018.2816000
    [16] Yin G Y, Zhou S L, Wu Q P. An improved RRT algorithm for UAV path planning[J]. Acta Electronica Sinica, 2017, 45(7):1764-1769 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dianzixb201707029
    [17] Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 1973, 10(2):112-122 doi: 10.3138/FM57-6770-U75U-7727
    [18] Prasad D K, Leung M K H, Quek C, et al. A novel framework for making dominant point detection methods non-parametric[J]. Image and Vision Computing, 2012, 30(11):843-859 doi: 10.1016/j.imavis.2012.06.010
    [19] Elbanhawi M, Simic M, Jazar R. Randomized bidirectional B-spline parameterization motion planning[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2):406-419 doi: 10.1109/TITS.2015.2477355
    [20] Uyar K, Vlker E. B-spline curve fitting with invasive weed optimization[J]. Applied Mathematical Modelling, 2017, 52:320-340 doi: 10.1016/j.apm.2017.07.047
    [21] Francis B, Elliott A, Weldon M. Smoothing group-based trajectory models through B-splines[J]. Journal of Developmental and Life-Course Criminology, 2016, 2(1):113-133 doi: 10.1007/s40865-016-0025-6
    [22] 曹凯, 周芦芦, 张政新.基于道路势场的智能车辆机动驾驶控制算法[J].系统仿真学报, 2011, 23(10):2206-2210 http://d.old.wanfangdata.com.cn/Conference/7646655

    Cao K, Zhou L L, Zhang Z X. Controlled algorithm for intelligent vehicle maneuver driving based on road potential field[J]. Journal of System Simulation, 2011, 23(10):2206-2210(in Chinese) http://d.old.wanfangdata.com.cn/Conference/7646655
    [23] 王宪, 盛巍, 宋书林, 等.基于遗传算法和B样条曲线的平滑避障路径规划[J].计算机系统应用, 2012, 21(2):65-71 doi: 10.3969/j.issn.1003-3254.2012.02.016

    Wang X, Sheng W, Song S L, et al. Smoothing obstacle avoidance path planning based on genetic algorithms and B-spline curve[J]. Computer Systems & Applications, 2012, 21(2):65-71(in Chinese) doi: 10.3969/j.issn.1003-3254.2012.02.016
    [24] Deng J Q, Hao C, Liu Y. Path planning research of soccer robot based on fuzzy theory[J]. Advanced Materials Research, 2012, 462:580-586 doi: 10.4028/www.scientific.net/AMR.462.580
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  162
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-23
  • 刊出日期:  2020-04-05

目录

    /

    返回文章
    返回