留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滚动轴承接触疲劳内部裂纹扩展有限元分析

谢俊杰 柳小勤 伍星 王之海

谢俊杰, 柳小勤, 伍星, 王之海. 滚动轴承接触疲劳内部裂纹扩展有限元分析[J]. 机械科学与技术, 2020, 39(3): 350-355. doi: 10.13433/j.cnki.1003-8728.20190132
引用本文: 谢俊杰, 柳小勤, 伍星, 王之海. 滚动轴承接触疲劳内部裂纹扩展有限元分析[J]. 机械科学与技术, 2020, 39(3): 350-355. doi: 10.13433/j.cnki.1003-8728.20190132
Xie Junjie, Liu Xiaoqin, Wu Xing, Wang Zhihai. Finite Element Analysis of Internal Crack Propagation Induced by Contact Fatigue of Rolling Bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 350-355. doi: 10.13433/j.cnki.1003-8728.20190132
Citation: Xie Junjie, Liu Xiaoqin, Wu Xing, Wang Zhihai. Finite Element Analysis of Internal Crack Propagation Induced by Contact Fatigue of Rolling Bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 350-355. doi: 10.13433/j.cnki.1003-8728.20190132

滚动轴承接触疲劳内部裂纹扩展有限元分析

doi: 10.13433/j.cnki.1003-8728.20190132
基金项目: 

国家自然科学基金项目 51465022

云南省科技计划重点项目 2017FA028

详细信息
    作者简介:

    谢俊杰(1995-), 硕士研究生, 研究方向为轴承疲劳损伤分析, xiejunj@yeah.net

    通讯作者:

    柳小勤, 副教授, 硕士生导师, liuxqsmile@gmail.com

  • 中图分类号: TH133.33+4

Finite Element Analysis of Internal Crack Propagation Induced by Contact Fatigue of Rolling Bearing

  • 摘要: 滚动轴承滚道在工作过程中承受较大的接触应力,接触疲劳是滚动轴承失效的主要形式。为了探究轴承的接触疲劳以及接触疲劳引起的内部裂纹,将损伤力学带入Voronoi有限元方法中,仿真轴承材料拓扑随机性和材料的劣化过程。建立轴承接触疲劳裂纹扩展模型,有效仿真出轴承内部裂纹的萌生、生长、相交、扩展至表面的过程,得到轴承表面裂纹出现的寿命和内部裂纹扩展路径。计算了裂纹扩展过程中所释放的能量,研究内容能够为轴承接触疲劳损伤研究提供新的思路和工具。
  • 图  1  将域离散为Voronoi元素划分为线性三角形单元的过程

    图  2  轴承线接触弹性半空间模型

    图  3  JIC示意图

    图  4  单元分离产生微裂纹, 并在裂纹间添加两个线接触单元

    图  5  滚动轴承接触疲劳裂纹扩展建模

    图  6  模型在各加载循环次数下的剪切应力云图和裂纹扩展路径

    图  7  裂纹产生和扩展过程中的能量释放

    表  1  轴承线接触弹性半空间模型参数

    参数 数值
    模型宽度 1 000 μm
    模型深度 600 μm
    单元平均尺寸 10 μm
    赫兹接触半径b 100 μm
    材料初始弹性模量E 200 GPa
    泊松比μ 0.3
    下载: 导出CSV
  • [1] Vijay A, Paulson N, Sadeghi F. A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[J]. International Journal of Fatigue, 2018, 106:92-102 doi: 10.1016/j.ijfatigue.2017.09.016
    [2] Nazir M H, Khan Z A, Saeed A. Experimental analysis and modelling of c-crack propagation in silicon nitride ball bearing element under rolling contact fatigue[J]. Tribology International, 2018, 126:386-401 doi: 10.1016/j.triboint.2018.04.030
    [3] Olver A V. The mechanism of rolling contact fatigue: an update[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2005, 219(5):313-330 doi: 10.1243/135065005X9808
    [4] Sadeghi F, Jalalahmadi B, Slack T S, et al. A review of rolling contact fatigue[J]. Journal of Tribology, 2009, 131(4):041403 doi: 10.1115/1.3209132
    [5] Konrad A, Nierlich W, Gegner J. Finite element analysis of the rolling-sliding contact of vibrationally loaded bearings based on a micro friction model[J]. Materials Science Forum, 2014, 768-769:714-722 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/MSF.768-769.714
    [6] 陈玉莲, 肖曙红, 陈署泉, 等.高速角接触球轴承接触疲劳寿命的有限元分析[J].机械设计与制造, 2009(9):9-11 doi: 10.3969/j.issn.1001-3997.2009.09.004

    Chen Y L, Xiao S H, Chen S Q, et al. Finite element analysis on the contact fatigue life of high speed angular contact ball bearings[J]. Machinery Design & Manufacture, 2009(9):9-11(in Chinese) doi: 10.3969/j.issn.1001-3997.2009.09.004
    [7] Raje N, Sadeghi F, Rateick R G Jr, et al. A numerical model for life scatter in rolling element bearings[J]. Journal of Tribology, 2008, 130(1):011011 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58e54ddf2c8e88db37818f2fb01f7c69
    [8] Paulson N R, Bomidi J A R, Sadeghi F, et al. Effects of crystal elasticity on rolling contact fatigue[J]. International Journal of Fatigue, 2014, 61:67-75 doi: 10.1016/j.ijfatigue.2013.12.005
    [9] Jalalahmadi B, Sadeghi F. A Voronoi finite element study of fatigue life scatter in rolling contacts[J]. Journal of Tribology, 2009, 131(2):022203 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c28b2f1a252f6709fc4dd6a0ec5efa0
    [10] Londhe N D, Arakere N K, Subhash G. Effect of plasticity on the dynamic capacity of modern bearing steels[J]. Tribology International, 2019, 133:160-171 doi: 10.1016/j.triboint.2018.12.034
    [11] Li F K, Hu W P, Meng Q C, et al. A new damage-mechanics-based model for rolling contact fatigue analysis of cylindrical roller bearing[J]. Tribology International, 2018, 120:105-114 doi: 10.1016/j.triboint.2017.12.001
    [12] Jalalahmadi B, Sadeghi F, Peroulis D. A numerical fatigue damage model for life scatter of MEMS devices[J]. Journal of Microelectromechanical Systems, 2009, 18(5):1016-1031 doi: 10.1109/JMEMS.2009.2024800
    [13] Sadeghi F, Jalalahmadi B, Slack T S, et al. A review of rolling contact fatigue[J]. Journal of Tribology, 2009, 131(4):041403 doi: 10.1115/1.3209132
    [14] Ruellan A, Ville F, Kleber X, et al. Understanding white etching cracks in rolling element bearings: the effect of hydrogen charging on the formation mechanisms[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228(11):1252-1265 doi: 10.1177/1350650114522452
    [15] Walvekar A A, Paulson N, Sadeghi F, et al. A new approach for fatigue damage modeling of subsurface-initiated spalling in large rolling contacts[J]. Journal of Tribology, 2017, 139(1):011101 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c28b2f1a252f6709fc4dd6a0ec5efa0
    [16] Han N, Guo R. Two new Voronoi cell finite element models for fracture simulation in porous material under inner pressure[J]. Engineering Fracture Mechanics, 2019, 211:478-494 doi: 10.1016/j.engfracmech.2019.01.012
    [17] Raje N, Sadeghi F, Rateick R G Jr. A statistical damage mechanics model for subsurface initiated spalling in rolling contacts[J]. Journal of Tribology, 2008, 130(4):042201 http://cn.bing.com/academic/profile?id=f767111c28474676cbcefd0eb7281a0a&encoded=0&v=paper_preview&mkt=zh-cn
    [18] Xiao S, Wang H L, Liu B, et al. The surface-forming energy release rate versus the local energy release rate[J]. Engineering Fracture Mechanics, 2017, 175:86-100 doi: 10.1016/j.engfracmech.2017.02.006
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  979
  • HTML全文浏览量:  281
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 刊出日期:  2020-03-05

目录

    /

    返回文章
    返回