留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型船用螺旋桨自适应加工方法研究

张明德 马帅 谢乐 罗静

张明德, 马帅, 谢乐, 罗静. 大型船用螺旋桨自适应加工方法研究[J]. 机械科学与技术, 2019, 38(11): 1752-1759. doi: 10.13433/j.cnki.1003-8728.20190050
引用本文: 张明德, 马帅, 谢乐, 罗静. 大型船用螺旋桨自适应加工方法研究[J]. 机械科学与技术, 2019, 38(11): 1752-1759. doi: 10.13433/j.cnki.1003-8728.20190050
Zhang Mingde, Ma Shuai, Xie Le, Luo Jing. Study on Adaptive Machining Method for Large Marine Propeller[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1752-1759. doi: 10.13433/j.cnki.1003-8728.20190050
Citation: Zhang Mingde, Ma Shuai, Xie Le, Luo Jing. Study on Adaptive Machining Method for Large Marine Propeller[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1752-1759. doi: 10.13433/j.cnki.1003-8728.20190050

大型船用螺旋桨自适应加工方法研究

doi: 10.13433/j.cnki.1003-8728.20190050
基金项目: 

重庆重点产业共性关键技术创新专项项目 cstc2017zdcy-zdzxX0005

详细信息
    作者简介:

    张明德(1975-), 教授, 研究方向为复杂曲面零件智能化与数字化制造, zmd@cqut.edu.cn

  • 中图分类号: TH165+.2

Study on Adaptive Machining Method for Large Marine Propeller

  • 摘要: 针对具有自由曲面的大型船用螺旋桨铸造毛坯表面体积大,加工余量大,加工耗时长的问题,结合五轴铣磨复合加工机床提出了一种基于三维扫描的螺旋桨余量自适应加工方法。首先,利用三维扫描仪获得螺旋桨扫描数据,并利用算法进行理论模型与扫描数据的对比;然后,对匹配后的模型进行余量提取,依据模型余量规划螺旋桨加工轨迹线,并应用于螺旋桨叶片铣磨复合加工算法;最后,依据加工理论进行了螺旋桨加工实验并进行了检验。
  • 图  1  五轴铣磨复合加工系统

    图  2  各区域加工余量

    图  3  余量自适应加工策略

    图  4  余量自适应加工示意图

    图  5  螺旋桨毛坯扫描

    图  6  理论模型与测量数据之间的最优匹配

    图  7  模型匹配

    图  8  数控机床加工刀具轨迹线

    图  9  刀触点加工余量

    图  10  各刀触点余量分布情况

    图  11  自适应加工刀具轨迹线

    图  12  铣磨复合加工机床坐标系定义

    图  13  B角计算示意图

    图  14  螺旋桨表面比较

    图  15  叶背偏差

    图  16  叶盆偏差

    图  17  叶片粗糙度检测

    图  18  叶盆粗糙度

    图  19  叶背粗糙度

    表  1  各轴运动范围

    各轴范围 上限 下限 定位精度 重复定位精度
    X轴行程/mm 70 1 480 0.036 0.025
    Z轴行程/mm -150 1 870 0.036 0.025
    A角范围/(°) -60 60 0.017 0.008
    B角范围/(°) -24 24 0.017 0.008
    C角范围/(°) -360 360 0.017 0.008
    下载: 导出CSV

    表  2  各刀触点对应余量分布表

    Xi Yi Zi Mi
    1 164.003 88 204.838 318 1.478 206 4.143
    1 163.407 96 203.890 611 4.640 286 4.432
    1 162.788 68 202.941 366 7.794 969 4.347
    1 162.146 17 201.990 784 10.942 085 4.557
    1 161.480 54 201.039 066 14.081 461 4.492
    1 160.791 93 200.086 413 17.212 927 4.428
    1 160.080 47 199.133 026 20.336 309 4.566
    1 159.346 29 198.179 097 23.451 435 4.593
    下载: 导出CSV

    表  3  各工序加工参数

    工序 刀具类型 刀具规格/mm 刀具进给速度/(mm·min-1)
    铣削 盘铣刀 250×10 50
    粗磨 砂带 350×50 300
    精磨 砂带 350×30 450
    下载: 导出CSV

    表  4  检测结果

    检测项目 技术指标 检测结果
    尺寸偏差/mm ±1.0 0.14~0.83
    表面粗糙度Ra/μm 0.8 0.32~0.74
    下载: 导出CSV
  • [1] 贾振元, 王永青, 王福吉, 等.高性能复杂曲面零件测量-再设计-数字加工一体化加工方法[J].机械工程学报, 2013, 49(19):126-132 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201319016

    Jia Z Y, Wang Y Q, Wang F J, et al. Research on measure-redesign-machining integration manufacturing method for complicated surface parts with high performance[J]. Journal of Mechanical Engineering, 2013, 49(19):126-132(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201319016
    [2] Xiao G J, Huang Y, Fei Y. On-machine contact measurement for the main-push propeller blade with belt grinding[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5-8):1713-1723 doi: 10.1007/s00170-016-8590-8
    [3] 高明明.螺旋曲面盘铣刀铣削加工过程分析[D].沈阳: 沈阳工业大学, 2014

    Gao M M. Analysis of the milling process for spiral surface with disk cutter[D]. Shenyang: Shenyang University of Technology, 2014(in Chinese)
    [4] 任斐.基于坐标映射的复杂曲面五轴加工关键技术研究[D].辽宁大连: 大连理工大学, 2011

    Ren F. Research on key technologies of five-axis machining for complicated surface based on coordinate mapping[D]. Liaoning Dalian: Dalian University of Technology, 2011(in Chinese)
    [5] 王建军.汽轮机叶片圆环形盘铣刀包络加工理论研究[D].沈阳: 沈阳工业大学, 2015

    Wang J J. Research on circular disk cutter envelop milling theory for turbine blade[D]. Shenyang: Shenyang University of Technology, 2015(in Chinese)
    [6] 朱心雄.自由曲线曲面造型技术[M].北京: 科学出版社, 2000: 152-155, 306-330

    Zhu X X. Free curve and curved surface modeling technology[M]. Beijing: Science Press, 2000: 152-155, 306-330(in Chinese)
    [7] 任秉银, 刘华明, 唐余勇.螺旋桨叶片曲面数控加工几何模型研究[J].哈尔滨工业大学学报, 1999, 31(4):84-87 doi: 10.3321/j.issn:0367-6234.1999.04.024

    Ren B Y, Liu H M, Tang Y Y. Research on geometry models of NC machining of propeller blade surface[J]. Journal of Harbin Institute of Technology, 1999, 31(4): 84-87(in Chinese) doi: 10.3321/j.issn:0367-6234.1999.04.024
    [8] 侯博.大型螺旋桨测量-磨削加工一体化制造方法与技术[D].辽宁大连: 大连理工大学, 2017

    Hou B. Measurement-grinding intergrated manufacturing method and technology for large propeller blades[D]. Liaoning Dalian: Dalian University of Technology, 2017(in Chinese)
    [9] Youn J W, Jun Y, Park S. Interference-free tool path generation in five-axis machining of a marine propeller[J]. International Journal of Production Research, 2003, 41(18):4383-4402 doi: 10.1080/0020754031000153342
    [10] Chen L F, Hu P C, Luo M, et al. Optimal interface surface determination for multi-axis freeform surface machining with both roughing and finishing[J]. Chinese Journal of Aeronautics, 2018, 31(2):370-384 doi: 10.1016/j.cja.2017.07.004
    [11] 张明德, 王加林, 苏占领, 等.船用螺旋桨叶片五轴联动砂带磨削方法研究[J].现代制造工程, 2016(3):43-48 http://d.old.wanfangdata.com.cn/Periodical/jxgys201603011

    Zhang M D, Wang J L, Su Z L, et al. Research on 5-axis CNC belt grinding method of marine propeller blades[J]. Modern Manufacturing Engineering, 2016(3):43-48(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgys201603011
    [12] 张明德, 温钊, 蔡汉水, 等.叶片机器人砂带自适应磨削方法研究[J].重庆理工大学学报, 2018, 32(4):81-86 doi: 10.3969/j.issn.1674-8425(z).2018.04.013

    Zhang M D, Wen Z, Cai H S. et al. Research on adaptive belt grinding method of blade robot[J]. Journal of Chongqing Institute of Technology, 2018, 32(4):81-86(in Chinese) doi: 10.3969/j.issn.1674-8425(z).2018.04.013
    [13] Zhang Q L, Duan J G, Zhang S H, et al. Nonlinear dynamic modeling for a diesel engine propeller shafting used in large marines[J]. Chinese Journal of Mechanical Engineering, 2014, 27(5):937-948 doi: 10.3901/CJME.2014.0721.121
    [14] 徐玲, 张胜文, 朱成顺, 等.船用螺旋桨加工工艺及数控编程技术研究[J].船舶工程, 2012, 34(6):47-49 http://www.cnki.com.cn/Article/CJFDTotal-CANB201206015.htm

    Xu L, Zhang S W, Zhu C S, et al. Research on processing technology and NC programming technology of marine propeller[J]. Ship Engineering, 2012, 34(6):47-49(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-CANB201206015.htm
    [15] 毕庆真, 丁汉, 王宇晗.复杂曲面零件五轴数控加工理论与技术[M].武汉:武汉理工大学出版社, 2016

    Bi Q Z, Ding H, Wang Y H. Theory and technique for five-axis NC machining of complex surface part[M]. Wuhan: Wuhan University of Technology Press, 2016(in Chinese)
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  125
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 刊出日期:  2019-11-05

目录

    /

    返回文章
    返回