留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种双NURBS曲线的参数迭代插补算法

江本赤 王建彬 苏学满

江本赤, 王建彬, 苏学满. 一种双NURBS曲线的参数迭代插补算法[J]. 机械科学与技术, 2019, 38(5): 754-760. doi: 10.13433/j.cnki.1003-8728.20180225
引用本文: 江本赤, 王建彬, 苏学满. 一种双NURBS曲线的参数迭代插补算法[J]. 机械科学与技术, 2019, 38(5): 754-760. doi: 10.13433/j.cnki.1003-8728.20180225
Jiang Benchi, Wang Jianbin, Su Xueman. An Interpolation Algorithm by Parametric-iteration for Dual-NURBS Curve[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 754-760. doi: 10.13433/j.cnki.1003-8728.20180225
Citation: Jiang Benchi, Wang Jianbin, Su Xueman. An Interpolation Algorithm by Parametric-iteration for Dual-NURBS Curve[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 754-760. doi: 10.13433/j.cnki.1003-8728.20180225

一种双NURBS曲线的参数迭代插补算法

doi: 10.13433/j.cnki.1003-8728.20180225
基金项目: 

国家自然科学基金项目 51575001

安徽工程大学引进人才科研启动基金项目 2016YQQ014

安徽高校优秀青年人才支持计划重点项目 gxyqZD2016465

详细信息
    作者简介:

    江本赤(1979-), 副教授, 博士, 研究方向为数控技术及工业机器人应用技术, benchi_ahpu@163.com

  • 中图分类号: TP273

An Interpolation Algorithm by Parametric-iteration for Dual-NURBS Curve

  • 摘要: 为提高非均匀有理B样条(NURBS)曲线插补的步长精度,给出了一种基于参数迭代的双NURBS曲线插补算法。先进行刀尖点曲线插补,基于NURBS的局部特性分析,利用插补步长与参数增量间的近似线性关系,通过迭代寻优,获取了精确步长所对应的插补参数;然后依据双NURBS曲线间的同步关系,计算出刀轴矢量曲线的插补参数,实现了面向五轴加工的刀具位姿插补。实验结果表明,该方法所得的步长精度优于Taylor展开插补法,并可保证刀轴矢量与工件表面法线方向的一致性,有利于获得更加光滑的加工表面。
  • 图  1  等参数增量的插补点分布

    图  2  等参数增量插补的步长变化

    图  3  某3次NURBS曲线的部分基函数

    图  4  基函数的增量变化

    图  5  参数迭代寻优法的等步长插补效果

    图  6  插补步长的变化情况对比

    图  7  Taylor法与迭代法的步长变化对比

    图  8  离散刀路的双NURBS描述

    图  9  刀位数据描述的离散刀具位姿

    图  10  由刀位数据拟合出的双NURBS曲线

    图  11  刀具位姿双NURBS曲线插补效果

    图  12  两种算法所得的工件表面对比

  • [1] Sevilla R, Barbieri E. NURBS distance fields for extremely curved cracks[J]. Computational Mechanics, 2014, 54(6):1431-1446 doi: 10.1007/s00466-014-1067-4
    [2] Yuen A, Zhang K, Altintas Y. Smooth trajectory generation for five-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 2013, 71:11-19 doi: 10.1016/j.ijmachtools.2013.04.002
    [3] Laseme A, Xue D Y, Gu P H. Recent development in CNC machining of freeform surface:a state-of-the-art review[J]. Computer-Aided Design, 2010, 42(7):641-654 doi: 10.1016/j.cad.2010.04.002
    [4] Mohan S, Kweon S H, Lee D M, et al. Parametric NURBS curve interpolators:a review[J]. International Journal of Precision Engineering and Manufacturing, 2008, 9(2):84-92
    [5] Feng J C, Li Y H, Wang Y H, et al. Design of a real-time adaptive NURBS interpolator with axis acceleration limit[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(1-4):227-241 doi: 10.1007/s00170-009-2261-y
    [6] 赵国勇, 徐志祥, 赵福令.高速高精度数控加工中NURBS曲线插补的研究[J].中国机械工程, 2006, 17(3):291-294 doi: 10.3321/j.issn:1004-132X.2006.03.020

    Zhao G Y, Xu Z X, Zhao F L. Study on NURBS curve interpolator in the high speed and high accuracy CNC machining[J]. China Mechanical Engineering, 2006, 17(3):291-294(in Chinese) doi: 10.3321/j.issn:1004-132X.2006.03.020
    [7] Yeh S S, Su H C. Implementation of online NURBS curve fitting process on CNC machines[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(5-6):531-540 doi: 10.1007/s00170-007-1361-9
    [8] Javad J, Mohammad R A. A novel ACC-Jerk-limited NURBS interpolation enhanced with an optimized S-shaped quintic feedrate scheduling scheme[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(9-12):1889-1905 doi: 10.1007/s00170-014-6575-z
    [9] Lee A C, Lin M T, Pan Y R, et al. The feedrate scheduling of NURBS interpolator for CNC machine tools[J]. Computer-Aided Design, 2011, 43(6):612-628 doi: 10.1016/j.cad.2011.02.014
    [10] Tsai M S, Nien H W, Yau H T. Development of integrated acceleration/deceleration look-ahead interpolation technique for multi-blocks NURBS curves[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(5-8):601-618 doi: 10.1007/s00170-011-3214-9
    [11] Emami M M, Arezoo B. A look-ahead command generator with control over trajectory and chord error for NURBS curve with unknown arc length[J]. Computer-Aided Design, 2010, 42(7):625-632 doi: 10.1016/j.cad.2010.04.001
    [12] 罗福源, 游有鹏, 尹娟.NURBS曲线泰勒展开插补法的平稳性与改进研究[J].中国机械工程, 2012, 23(4):383-388, 434 doi: 10.3969/j.issn.1004-132X.2012.04.003

    Luo F Y, You Y P, Yin J. Research on stability and improvement of taylor-expansion-based approach for NURBS curve interpolation[J]. China Mechanical Engineering, 2012, 23(4):383-388, 434.in Chinese doi: 10.3969/j.issn.1004-132X.2012.04.003
    [13] Sun Y W, Zhao Y, Bao Y R, et al. A novel adaptive-feedrate interpolation method for NURBS tool path with drive constraints[J]. International Journal of Machine Tools and Manufacture, 2014, 77:74-81 doi: 10.1016/j.ijmachtools.2013.11.002
    [14] 刘强, 刘焕, 周胜凯, 等.无速度波动的NURBS曲线二次插补算法原理及其实现[J].计算机集成制造系统, 2015, 21(10):2659-2667 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201510014

    Liu Q, Liu H, Zhou S K, et al. Principle and development of NURBS interpolation algorithm with zero-feedrate fluctuation[J]. Computer Integrated Manufacturing System, 2015, 21(10):2659-2667(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201510014
    [15] Les P, Wayne T. Non-uniform Rational B-spline[M]. 2nd ed. Beijing:Tsinghua University Press, 2010
  • 加载中
图(12)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  199
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-05
  • 刊出日期:  2019-05-05

目录

    /

    返回文章
    返回