留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超磁致伸缩电静液作动器输出流量影响因素分析

王振宇 朱玉川 李宇阳 罗樟

王振宇, 朱玉川, 李宇阳, 罗樟. 超磁致伸缩电静液作动器输出流量影响因素分析[J]. 机械科学与技术, 2019, 38(4): 582-586. doi: 10.13433/j.cnki.1003-8728.20180212
引用本文: 王振宇, 朱玉川, 李宇阳, 罗樟. 超磁致伸缩电静液作动器输出流量影响因素分析[J]. 机械科学与技术, 2019, 38(4): 582-586. doi: 10.13433/j.cnki.1003-8728.20180212
Wang Zhenyu, Zhu Yuchuan, Li Yuyang, Luo Zhang. Analyzing Factors of Influence on Performance of Giant Magnetostrictive Electro-hydrostatic Actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 582-586. doi: 10.13433/j.cnki.1003-8728.20180212
Citation: Wang Zhenyu, Zhu Yuchuan, Li Yuyang, Luo Zhang. Analyzing Factors of Influence on Performance of Giant Magnetostrictive Electro-hydrostatic Actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 582-586. doi: 10.13433/j.cnki.1003-8728.20180212

超磁致伸缩电静液作动器输出流量影响因素分析

doi: 10.13433/j.cnki.1003-8728.20180212
基金项目: 

江苏高校"青蓝工程"项目、上海航天科技创新基金资助项目 SAST2016081

南京航空航天大学研究生创新基地(实验室)开放基金项目 kfjj20170514

国家自然科学基金项目 51575258

详细信息
    作者简介:

    王振宇(1995-), 硕士研究生, 研究方向为流体传动与控制, wangzhenyu867@163.com

    通讯作者:

    朱玉川, 教授, 博士生导师, meeyczhu@nuaa.edu.cn

  • 中图分类号: TH137

Analyzing Factors of Influence on Performance of Giant Magnetostrictive Electro-hydrostatic Actuator

  • 摘要: 首先对作动器的工作原理进行分析,随后建立了作动器系统的数学模型,通过仿真分析得到超磁致伸缩执行器输出位移与驱动频率的关系,泵腔内活塞直径、泵腔高度与作动器输出流量的关系以及系统偏压与作动器输出流量的关系。对超磁致伸缩执行器进行实验和仿真对比,验证了仿真模型的正确性。对影响超磁致伸缩电静液作动器输出流量的几种因素进行总结,给出了这些影响因素在超磁致伸缩作动器设计与优化中的选取准则。
  • 图  1  GMEHA结构示意图

    图  2  GMEHA工作过程

    图  3  GMEHA系统仿真模型

    图  4  不同驱动频率下输入电流与输出位移关系

    图  5  活塞直径与输出流量的关系

    图  6  泵腔高度与输出流量的关系

  • [1] 杨旭磊, 朱玉川, 纪良, 等.超磁致伸缩电静液作动器的试验研究与特性分析[J].航空学报, 2016, 37(9):2839-2850 http://d.old.wanfangdata.com.cn/Periodical/hkxb201609022

    Yang X L, Zhu Y C, Ji L, et al. Experimental investigation and characteristic analysis of a giant magnetostrictive materials-based electro-hydrostatic actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2839-2850(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201609022
    [2] Liu X H, Zhang H, Gao X L, et al. Design and simulation analysis of giant magnetostrictive actuator[J]. Materials Technology, 2015, 30(3):155-158 doi: 10.1179/1753555714Y.0000000234
    [3] Luo M Z, Li W J, Wang J M, et al. Development of a novel guided wave generation system using a giant magnetostrictive actuator for nondestructive evaluation[J]. Sensors, 2018, 18(3):779 doi: 10.3390/s18030779
    [4] 李跃松, 朱玉川, 吴洪涛, 等.超磁致伸缩伺服阀用电-机转换器传热及热误差分析[J].农业机械学报, 2015, 46(2):343-350 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201502051

    Li Y S, Zhu Y C, Wu H T, et al. Modeling of heat transfer and displacement error from heat of giant magnetostrictive actuator applied in servovalve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):343-350(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201502051
    [5] Chaudhuri A, Wereley N. Compact hybrid electrohydraulic actuators using smart materials:A review[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(6):597-634 doi: 10.1177/1045389X11418862
    [6] Li Y S, Zhu Y C, Wu H T, et al. Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(3):378-388 doi: 10.1177/1045389X13498311
    [7] Yang X L, Zhu Y C, Zhu Y K. Characteristic investigations on magnetic field and fluid field of a giant magnetostrictive material-based electro-hydrostatic actuator[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(5):847-860 doi: 10.1177/0954410017696108
    [8] 杨旭磊, 朱玉川, 费尚书, 等.超磁致伸缩电静液作动器磁场分析与优化[J].航空动力学报, 2016, 31(9):2210-2217 http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609021

    Yang X L, Zhu Y C, Fei S S, et al. Magnetic field analysis and optimization of giant magnetostrictive electro-hydrostatic actuator[J]. Journal of Aerospace Power, 2016, 31(9):2210-2217(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609021
    [9] 纪良, 朱玉川, 杨旭磊, 等.超磁致伸缩执行器热损耗模型与实验[J].航空动力学报, 2017, 32(5):1066-1073 http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201705006

    Ji L, Zhu Y C, Yang X L, et al. Theoretical analysis and experiment of power loss in giant magnetostrictive actuator[J]. Journal of Aerospace Power, 2017, 32(5):1066-1073(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201705006
    [10] Chaudhuri A, Yoo J H, Wereley N M. Design, test and model of a hybrid magnetostrictive hydraulic actuator[J]. Smart Materials and Structures, 2009, 18(8):085019 doi: 10.1088/0964-1726/18/8/085019
    [11] 郭雪涛, 王修勇, 孟庆甲.超磁化条件下超磁致伸缩作动器迟滞现象研究[J].湖南工程学院学报, 2013, 23(4):62-67 http://d.old.wanfangdata.com.cn/Periodical/hngcxyxb-zr201304018

    Guo X T, Wang X Y, Meng Q J. Research on hysteresis of giant magnetostrictive actuator under over magnetised[J]. Journal of Hunan Institute of Engineering, 2013, 23(4):62-67(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hngcxyxb-zr201304018
    [12] 张旭辉, 刘永光, 付永领.磁致伸缩作动器结构优化设计[J].压电与声光, 2009, 31(3):377-380 doi: 10.3969/j.issn.1004-2474.2009.03.024

    Zhang X H, Liu Y G, Fu Y L. Optimum design of the magnetostrictive actuator[J]. Piezoelectrics & Acoustooptics, 2009, 31(3):377-380(in Chinese) doi: 10.3969/j.issn.1004-2474.2009.03.024
    [13] Guo Y Z, Zhu Y C, Li Y Y, et al. Model and experimental research of a hybrid self-contained electro-hydrostatic actuator using piezoelectric stack[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(7):1348-1359 doi: 10.1177/1045389X17733329
    [14] Zhu Y C, Li Y S. A hysteresis nonlinear model of giant magnetostrictive transducer[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(16):2242-2255 doi: 10.1177/1045389X14551434
    [15] Zhu Y C, Yang X L, Wereley N M. Research on hysteresis loop considering the prestress effect and electrical input dynamics for a giant magnetostrictive actuator[J]. Smart Materials and Structures, 2016, 25(8):085030 doi: 10.1088/0964-1726/25/8/085030
    [16] Jiles D C, Thoelke J B, Devine M K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics, 1992, 28(1):27-35 doi: 10.1109/20.119813
  • 加载中
图(6)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  80
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 刊出日期:  2019-04-05

目录

    /

    返回文章
    返回