留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄壁圆筒零件车铣复合加工稳定性分析

张政

张政. 薄壁圆筒零件车铣复合加工稳定性分析[J]. 机械科学与技术, 2019, 38(1): 44-48. doi: 10.13433/j.cnki.1003-8728.20180142
引用本文: 张政. 薄壁圆筒零件车铣复合加工稳定性分析[J]. 机械科学与技术, 2019, 38(1): 44-48. doi: 10.13433/j.cnki.1003-8728.20180142
Zhang Zheng. Stability Analysis of Turn-milling Machining of Thin-wall Cylinder Parts[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(1): 44-48. doi: 10.13433/j.cnki.1003-8728.20180142
Citation: Zhang Zheng. Stability Analysis of Turn-milling Machining of Thin-wall Cylinder Parts[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(1): 44-48. doi: 10.13433/j.cnki.1003-8728.20180142

薄壁圆筒零件车铣复合加工稳定性分析

doi: 10.13433/j.cnki.1003-8728.20180142
详细信息
    作者简介:

    张政(1985-), 中级工程师, 硕士研究生, 研究方向为结构和工艺设计, zzteller@163.com

  • 中图分类号: TH16

Stability Analysis of Turn-milling Machining of Thin-wall Cylinder Parts

  • 摘要: 某靶弹控制仓壳体为镁合金材料薄壁圆筒类零件,相对于传统车削工艺,车铣复合加工工艺具有主轴转速高、切削力小及切削温度低的特点,能有效降低镁合金材料的切削温度、提高加工效率及保证加工质量。针对靶弹壳体车铣复合加工稳定性研究与参数优化,建立考虑变切深变切厚的铣削力模型,利用有限元模型分析工件不同加工阶段和加工位置的动力学响应特性,结合模态锤击法得到的刀具端频响函数,建立XYZ方向的车铣复合加工稳定性预测模型。通过全离散法求解得到不同加工阶段下的稳定性lobe图,结果表明不同加工阶段下具有不同的稳定性加工边界,通过分阶段优化加工参数,可以在稳定加工的前提下提高加工效率。
  • 图  1  靶弹控制舱壳体及车铣复合加工示意图

    图  2  壳体有限元分析及频响函数

    图  3  刀具端频响函数

    图  4  车铣复合加工动力学模型

    图  5  不同加工阶段的稳定性lobe图

    图  6  不同加工参数加工表面

    表  1  切削深度参数

    加工阶段 1 2 3 4 5 6
    切深/mm 0.5 0.5 0.6 0.7 0.9 1
    下载: 导出CSV
  • [1] 周旦辉, 叶厚良, 朱宇光.某型靶弹系统设计与应用研究[J].现代防御技术, 2016, 44(5):46-51 doi: 10.3969/j.issn.1009-086x.2016.05.008

    Zhou D H, Ye H L, Zhu Y G. Research of application of design for some target missile design[J]. Modern Defense Technology, 2016, 44(5):46-51(in Chinese) doi: 10.3969/j.issn.1009-086x.2016.05.008
    [2] 李晓斌, 王永杰, 孙晓峰.简易控制火箭靶弹总体设计[J].弹道学报, 2010, 22(1):41-44 http://d.old.wanfangdata.com.cn/Periodical/ddxb201001010

    Li X B, Wang Y J, Sun X F. System design of simple control rocket target[J]. Journal of Ballistics, 2010, 22(1):41-44(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ddxb201001010
    [3] Choudhury S K, Mangrulkar K S. Investigation of orthogonal turn-milling for the machining of rotationally symmetrical work pieces[J]. Journal of Materials Processing Technology, 2000, 99(1-3):120-128 doi: 10.1016/S0924-0136(99)00397-0
    [4] Sasahara H, Kato A, Nakajima H, et al. High-speed rotary cutting of difficult-to-cut materials on multitasking lathe[J]. International Journal of Machine Tools and Manufacture, 2008, 48(7-8):841-850 doi: 10.1016/j.ijmachtools.2007.12.002
    [5] 祝孟琪, 徐文骥.车铣复合加工不锈钢细长轴的试验研究[J].机械设计与制造, 2015, (6):102-108 http://d.old.wanfangdata.com.cn/Periodical/jxsjyzz201506027

    Zhu M Q, Xu W J. Research on turn-milling of slender stainless steel shaft[J]. Machinery Design & Manufacture, 2015, (6):102-108(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxsjyzz201506027
    [6] Karaguzel U, Olgun U, Uysal E, et al. Increasing tool life in machining of difficult-to-cut materials using nonconventional turning processes[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(9-12):1993-2004 doi: 10.1007/s00170-014-6588-7
    [7] Karaguzel U, Bakkal M, Budak E. Process modeling of turn-milling using analytical approach[C]//3rd CIRP Conference on Process Machine Interactions. Nagoya, Japan: Elsevier, 2012: 131-139
    [8] Zhu L D, Li H N, Wang W S. Research on rotary surface topography by orthogonal turn-milling[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9-12):2279-2292 doi: 10.1007/s00170-013-5202-8
    [9] Qiu W W, Liu Q, Ding J, et al. Cutting force prediction in orthogonal turn-milling by directly using engagement boundaries[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1-4):963-975 doi: 10.1007/s00170-015-8173-0
    [10] Karaguzel U, Uysal E, Budak E, et al. Effects of tool axis offset in turn-milling process[J]. Journal of Materials Processing Technology, 2016, 231:239-247 doi: 10.1016/j.jmatprotec.2015.12.020
    [11] Karaguzel U, Bakkal M, Budak E. Mechanical and thermal modeling of orthogonal turn-milling operation[C]//16th CIRP Conference on Modelling of Machining Operations. Amsterdam: Elsevier, 2017: 287-292
    [12] 陈尔涛, 朱立达, 史家顺, 等.正交车铣加工凸轮型面的试验研究[J].制造技术与机床, 2012, (4):33-35 doi: 10.3969/j.issn.1005-2402.2012.04.012

    Chen E T, Zhu L D, Shi J S, et al. Experimental research on machining cam profile by the orthogonal turning-milling[J]. Manufacturing Technology & Machine Tool, 2012, (4):33-35(in Chinese) doi: 10.3969/j.issn.1005-2402.2012.04.012
    [13] 汪勇.轴类零件正交车铣加工稳定性建模与分析[D].武汉: 华中科技大学, 2014

    Wang Y. Stability modeling and analysis for orthogonal turn-milling of shaft parts[D]. Wuhan: Huazhong University of Science and Technology, 2014(in Chinese)
    [14] Yan R, Tang X W, Peng F Y, et al. The effect of variable cutting depth and thickness on milling stability for orthogonal turn-milling[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1-4):765-777 doi: 10.1007/s00170-015-7418-2
    [15] Tang X W, Peng F Y, Yan R, et al. Accurate and efficient prediction of milling stability with updated full-discretization method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):2357-2368 doi: 10.1007/s00170-016-8923-7
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  254
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 刊出日期:  2019-01-05

目录

    /

    返回文章
    返回