留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

突扩微管中二次起爆的数值研究

马鹏飞 何建男 张启斌 张建华

马鹏飞, 何建男, 张启斌, 张建华. 突扩微管中二次起爆的数值研究[J]. 机械科学与技术, 2018, 37(7): 1125-1131. doi: 10.13433/j.cnki.1003-8728.20180120
引用本文: 马鹏飞, 何建男, 张启斌, 张建华. 突扩微管中二次起爆的数值研究[J]. 机械科学与技术, 2018, 37(7): 1125-1131. doi: 10.13433/j.cnki.1003-8728.20180120
Ma Pengfei, He Jiannan, Zhang Qibin, Zhang Jianhua. Numerical Study of Detonation Re-initiation Inside a Sudden Expansion Micro-tube[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1125-1131. doi: 10.13433/j.cnki.1003-8728.20180120
Citation: Ma Pengfei, He Jiannan, Zhang Qibin, Zhang Jianhua. Numerical Study of Detonation Re-initiation Inside a Sudden Expansion Micro-tube[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1125-1131. doi: 10.13433/j.cnki.1003-8728.20180120

突扩微管中二次起爆的数值研究

doi: 10.13433/j.cnki.1003-8728.20180120
基金项目: 

陕西省自然科学基金项目(2016JQ1043)、西北工业大学博士创新基金项目(CX201714)及西安航空学院基金项目(2018KY1117)资助

详细信息
    作者简介:

    马鹏飞(1990-),硕士研究生,研究方向为微爆震燃烧及推进技术,pengfeima12@163.com

Numerical Study of Detonation Re-initiation Inside a Sudden Expansion Micro-tube

  • 摘要: 为研究微尺度下爆震波经过突扩管的二次起爆特性,采用恰当比的乙烯(C2H4)与氧气(O2)(或恰当比的氢气(H2)与氧气(O2))的混合气,在不同突扩比的管道内进行了爆震数值研究。结果表明,燃料与突扩比都会对二次起爆产生影响,在一定突扩比范围内,突扩比越大,起爆距离与时间越长。对于相同突扩比,C2H4/O2混合气相比较于H2/O2混合气缓燃转爆震的时间短,但H2/O2混合气比C2H4/O2混合气二次起爆的突扩比范围宽广;H2/O2混合气突扩比超过7、C2H4/O2混合气突扩比超过5时化学反应区与激波将不能够再次耦合形成爆震波。
  • [1] 严传俊,范玮.脉冲爆震发动机原理及关键技术[M].西安:西北工业大学出版社, 2005 Yan C J, Fan W. The principle and key technology of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese)
    [2] Kailasanath K. Recent developments in the research on pulse detonation engines[J]. AIAA Journal, 2003,41(2):145-159
    [3] Fickett W, Davis W C. Detonation[M]. Berkeley:University of California Press, 1979
    [4] Lee J H S. The detonation phenomenon[M]. London:Cambridge University Press, 2008
    [5] Gamezo V N, Oran E S. Flame acceleration in narrow channels:application for micropropulsion in low-gravity environments[J]. AIAA Journal, 2006,44(2):329-336
    [6] Wu M H, Burke M P, Son S F, et al. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes[J]. Proceedings of the Combustion Institute, 2007,31(2):2429-2436
    [7] Wu M H, Wang C Y. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures[J]. Proceedings of the Combustion Institute, 2011,33(2):2287-2293
    [8] Li J Z, Zhang P G, Yuan L, et al. Flame propagation and detonation initiation distance of ethylene/oxygen in narrow gap[J]. Applied Thermal Engineering, 2017,110:1274-1282
    [9] Pan Z H, Chen K P, Pan J F, et al. An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps[J]. Experimental Thermal and Fluid Science, 2017,88:354-360
    [10] Oran E S, Weber J W Jr, Stefaniw E I, et al. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model[J]. Combustion and Flame, 1998,113(1-2):147-163
    [11] 李建玲.多模态爆震组合发动机关键模态的研究[D].西安:西北工业大学, 2011 Li J L. Study on key modes of multimodal combined detonation pulse engine[D]. Xi'an:Northwestern Polytechnical University, 2011(in Chinese)
    [12] Moen I O, Donato M, Knystautas R, et al. The influence of confinement on the propagation of detonations near the detonability limits[J]. Symposium (International) on Combustion, 1981,18(1):1615-1622
    [13] Zhou F, Liu N, Zhang X Y. Numerical study of hydrogen-oxygen flame acceleration and deflagration to detonation transition in combustion light gas gun[J]. International Journal of Hydrogen Energy, 2018,43(10):5405-5414
    [14] Han W H, Gao Y, Law C K. Flame acceleration and deflagration-to-detonation transition in micro-and macro-channels:an integrated mechanistic study[J]. Combustion and Flame, 2017,176:285-298
    [15] Wang C, Zhao Y Y, Zhang B. Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels[J]. Journal of Loss Prevention in the Process Industries, 2016,43:120-126
    [16] Jones D A, Kemister G, Tonello N A, et al. Numerical simulation of detonation reignition in H2-O2 mixtures in area expansions[J]. Shock Waves, 2000,10(1):33-41
    [17] Pantow E G, Fischer M, Kratzel T. Decoupling and recoupling of detonation waves associated with sudden expansion[J]. Shock Waves, 1996,6(3):131-137
    [18] Wu M H, Kuo W C. Transmission of near-limit detonation wave through a planar sudden expansion in a narrow channel[J]. Combustion and Flame, 2012,159(11):3414-3422
    [19] Gordon S, McBride B J. Computer program for calculation of complex chemical equilibrium compositions and applications I. Analysis[R]. NASA RP, 1994
  • 加载中
计量
  • 文章访问数:  193
  • HTML全文浏览量:  38
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-15
  • 刊出日期:  2018-07-05

目录

    /

    返回文章
    返回