留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC单晶片研磨材料去除率研究

袁启龙 付慧 李淑娟 姜陶然 杨明顺

袁启龙, 付慧, 李淑娟, 姜陶然, 杨明顺. SiC单晶片研磨材料去除率研究[J]. 机械科学与技术, 2018, 37(12): 1969-1974. doi: 10.13433/j.cnki.1003-8728.20180097
引用本文: 袁启龙, 付慧, 李淑娟, 姜陶然, 杨明顺. SiC单晶片研磨材料去除率研究[J]. 机械科学与技术, 2018, 37(12): 1969-1974. doi: 10.13433/j.cnki.1003-8728.20180097
Yuan Qilong, Fu Hui, Li Shujuan, Jiang Taoran, Yang Mingshun. Study on Material Removal Rate in Lapping of SiC Single Crystal Wafer[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1969-1974. doi: 10.13433/j.cnki.1003-8728.20180097
Citation: Yuan Qilong, Fu Hui, Li Shujuan, Jiang Taoran, Yang Mingshun. Study on Material Removal Rate in Lapping of SiC Single Crystal Wafer[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1969-1974. doi: 10.13433/j.cnki.1003-8728.20180097

SiC单晶片研磨材料去除率研究

doi: 10.13433/j.cnki.1003-8728.20180097
基金项目: 

国家自然科学基金项目 51575442

陕西省教育厅重点实验室项目 13JS071

国家自然科学基金项目 51175420

详细信息
    作者简介:

    袁启龙(1970-), 副教授, 硕士生导师, 研究方向为先进制造技术, YuanQL@xaut.edu.cn

  • 中图分类号: TH145.9

Study on Material Removal Rate in Lapping of SiC Single Crystal Wafer

  • 摘要: 碳化硅(SiC)单晶片属于难加工材料,在使用之前必须要进行研磨与抛光。材料去除率(Material removal rate,MRR)是衡量SiC单晶片研磨与抛光效率的重要因素。针对传统研磨与抛光过程中考虑磨粒摩擦磨损时建立的材料去除率公式对材料去除的不足,考虑SiC单晶片研磨时磨粒挤压嵌入阶段的材料去除,建立了新型的材料去除率公式。根据SiC单晶片、磨粒与研磨盘之间的接触状态,推导出了包含嵌入阶段和摩擦磨损阶段材料去除的新型MRR数学模型;结合材料的物理特性(如硬度与弹性模量等),进行研磨实验。实验结果与模型预测结果表明,新型材料去除率公式的预测结果更接近实际情况。
  • 图  1  单颗磨粒去除晶片材料示意图

    图  2  单颗磨粒嵌入晶片深度的横截面模型

    图  3  球形磨粒与晶片和研磨盘接触去除材料模型

    图  4  研磨盘硬度与接触比对MRR的影响

    图  5  磨粒粒度与偏差对MRR的影响

    图  6  不同压强下研磨盘转速对MRR的影响

    图  7  金刚石研磨膏

    图  8  BS/BT电子天平

    图  9  不同转速下实验与理论MRR对比

    图  10  不同压强下实验与理论MRR对比

    表  1  不同转速下的实验与预测MRR结果(压强为18.8 kPa)

    研磨盘转速/(r·min-1) 10 20 30 40 50 60
    实验值 MRR/(nm·min-1) 46.633 95.935 131.236 175.544 225.935 271.236
    改进前[11] MRR/(nm·min-1) 40.250 81.783 110.513 145.838 185.773 220.119
    相对误差/% 13.688 14.752 15.791 16.922 17.776 18.846
    改进后 MRR/(nm·min-1) 43.856 89.923 121.910 161.867 206.945 246.645
    相对误差/% 5.954 6.627 7.106 7.791 8.405 9.066
    下载: 导出CSV

    表  2  不同压强下的MRR实验与预测MRR结果(转速为40 r/min)

    研磨压强/kPa 5 8 11 14 17 20
    实验值 MRR/(nm·min-1) 43.353 73.113 104.412 133.448 167.584 197.204
    改进前[11] MRR/(nm·min-1) 38.638 64.699 91.665 116.116 145.008 169.124
    相对误差/% 10.876 11.509 12.209 12.988 13.472 14.239
    改进后 MRR/(nm·min-1) 41.225 69.108 97.782 124.124 154.630 180.742
    相对误差/% 4.908 5.478 6.349 6.987 7.730 8.348
    下载: 导出CSV
  • [1] Deng H, Endo K, Yamamura K. Damage-free and atomically-flat finishing of single crystal SiC by combination of oxidation and soft abrasive polishing[J]. Procedia CIRP, 2014, 13:203-207 doi: 10.1016/j.procir.2014.04.035
    [2] 张玉明, 汤晓燕, 张义门.SiC功率器件的研究和展望[J].电力电子技术, 2008, 42(12):60-62 doi: 10.3969/j.issn.1000-100X.2008.12.022

    Zhang Y M, Tang X Y, Zhang Y M. Study and perspective on SiC power devices[J]. Power Electronics, 2008, 42(12):60-62(in Chinese) doi: 10.3969/j.issn.1000-100X.2008.12.022
    [3] 王军喜, 刘喆, 魏同波, 等.第3代半导体材料在光电器件方面的发展和应用[J].新材料产业, 2014, (3):18-20 doi: 10.3969/j.issn.1008-892X.2014.03.005

    Wang J X, Liu Z, Wei T B, et al. Development and application of third generation semiconductor materials in optoelectronic devices[J]. Advanced Materials Industry, 2014, (3):18-20(in Chinese) doi: 10.3969/j.issn.1008-892X.2014.03.005
    [4] 叶恒宇, 覃寿同, 王栋, 等.磁力研磨调质45钢的工艺参数和表面形貌研究[J].机械科学与技术, 2017, 36(8):1292-1297 http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract6773.shtml

    Ye H Y, Qin S T, Wang D, et al. Study on processing parameters and surface morphology of quenched and tempered 45 steel in magnetic abrasive finishing[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8):1292-1297(in Chinese) http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract6773.shtml
    [5] Zhou L B, Shimizu J, Shinohara K, et al. Three-dimensional kinematical analyses for surface grinding of large scale substrate[J]. Precision Engineering, 2003, 27(2):175-184 doi: 10.1016/S0141-6359(02)00225-8
    [6] Jin X L, Zhang L C. A statistical model for material removal prediction in polishing[J]. Wear, 2012, 274-275:203-211 doi: 10.1016/j.wear.2011.08.028
    [7] Li P Y, Wang Z J, Li X Y, et al. Elasto-plastic indentation of a half-space by a rigid sphere under normal and torque loading[J]. Tribology International, 2013, 62:141-148 doi: 10.1016/j.triboint.2013.02.015
    [8] Xu W H, Lu X C, Pan G S, et al. Effects of the ultrasonic flexural vibration on the interaction between the abrasive particles; pad and sapphire substrate during chemical mechanical polishing (CMP)[J]. Applied Surface Science, 2011, 257(7):2905-2911 doi: 10.1016/j.apsusc.2010.10.088
    [9] 刘折, 赵波, 郑友益, 等.超声ELID复合磨削陶瓷材料高效去除机理的仿真研究[J].兵器材料科学与工程, 2014, 37(5):27-31 doi: 10.3969/j.issn.1004-244X.2014.05.007

    Liu Z, Zhao B, Zheng Y Y, et al. Simulation on mechanism of ceramic removal by ultrasonic ELID composite grinding[J]. Ordnance Material Science and Engineering, 2014, 37(5):27-31(in Chinese) doi: 10.3969/j.issn.1004-244X.2014.05.007
    [10] 胡海明, 李淑娟, 高晓春, 等.SiC单晶片研磨过程材料去除率仿真与试验研究[J].兵工学报, 2013, 34(9):1125-1131 http://d.old.wanfangdata.com.cn/Periodical/bgxb201309011

    Hu H M, Li S J, Gao X C, et al. Simulation and experiment of MRR in lapping process of SiC monocrystal wafers[J]. Acta Armamentarii, 2013, 34(9):1125-1131(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/bgxb201309011
    [11] Pohl M C, Griffiths D A. The importance of particle size to the performance of abrasive particles in the CMP process[J]. Journal of Electronic Materials, 1996, 25(10):1612-1616 doi: 10.1007/BF02655584
    [12] Kumar A, Mahapatra M M, Jha P K. Modeling the abrasive wear characteristics of in-situ synthesized Al-4.5%Cu/TiC composites[J]. Wear, 2013, 306(1-2):170-178 doi: 10.1016/j.wear.2013.08.013
    [13] Uhlmann E, Doits M, Schmiedel C. Development of a material model for visco-elastic abrasive medium in Abrasive Flow Machining[J]. Procedia CIRP, 2013, 8:351-356 doi: 10.1016/j.procir.2013.06.115
    [14] Bielmann M, Mahajan U, Singh R K. Effect of particle size during tungsten chemical mechanical polishing[J]. Electrochemical and Solid-State Letters, 1999, 2(8):401-403 doi: 10.1149/1.1390851
    [15] 许迪初, 汪久根.粗糙表面的弹塑性接触研究[J].摩擦学学报, 2016, 36(3):371-379 http://d.old.wanfangdata.com.cn/Periodical/zgjxgc200722024

    Xu D C, Wang J G. On deterministic elastoplastic contact for rough surfaces[J]. Tribology, 2016, 36(3):371-379(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgjxgc200722024
    [16] Zhao Y W, Chang L. A micro-contact and wear model for chemical-mechanical polishing of silicon wafers[J]. Wear, 2002, 252(3-4):220-226 doi: 10.1016/S0043-1648(01)00871-7
    [17] Luo J F, Dornfeld D A. Material removal mechanism in chemical mechanical polishing:theory and modeling[J]. IEEE Transactions on Semiconductor Manufacturing, 2001, 14(2):112-133 doi: 10.1109/66.920723
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  198
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 刊出日期:  2018-12-05

目录

    /

    返回文章
    返回