留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强噪声背景信号的Perona-Malik扩散滤波算法

毋文峰 陈小虎

毋文峰, 陈小虎. 强噪声背景信号的Perona-Malik扩散滤波算法[J]. 机械科学与技术, 2018, 37(8): 1190-1194. doi: 10.13433/j.cnki.1003-8728.20180001
引用本文: 毋文峰, 陈小虎. 强噪声背景信号的Perona-Malik扩散滤波算法[J]. 机械科学与技术, 2018, 37(8): 1190-1194. doi: 10.13433/j.cnki.1003-8728.20180001
Wu Wenfeng, Chen Xiaohu. Perona-Malik Diffusion Filtering Algorithm for Mechanical Vibration Signals in Strong Noise Background[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1190-1194. doi: 10.13433/j.cnki.1003-8728.20180001
Citation: Wu Wenfeng, Chen Xiaohu. Perona-Malik Diffusion Filtering Algorithm for Mechanical Vibration Signals in Strong Noise Background[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1190-1194. doi: 10.13433/j.cnki.1003-8728.20180001

强噪声背景信号的Perona-Malik扩散滤波算法

doi: 10.13433/j.cnki.1003-8728.20180001
基金项目: 

四川省科技计划项目(2016JY0222)与四川省教育厅科研计划项目(16ZB0559)资助

详细信息
    作者简介:

    毋文峰(1978-),副教授,博士,研究方向为偏微分方程理论及应用,信号处理,peakxde@163.com

    通讯作者:

    陈小虎,教授,博士生导师,tigerchen@hotmail.com

Perona-Malik Diffusion Filtering Algorithm for Mechanical Vibration Signals in Strong Noise Background

  • 摘要: 为了提取强噪声背景下机械振动信号的微弱故障特征,提出利用Perona-Malik非线性各向异性扩散滤波模型来实现强噪声背景信号降噪的方法。首先阐述了偏微分方程和Perona-Malik扩散滤波模型在图像降噪中的应用;其次分析了小波变换等传统信号降噪方法的不足;最后基于图像降噪和信号降噪原理的相似性,利用Perona-Malik扩散滤波模型来实现机械振动信号的降噪,将其用于轴承振动仿真信号和实测信号。实验表明,与小波阈值去噪算法等传统信号降噪方法相比,Perona-Malik扩散滤波模型更适用于强噪声背景信号降噪,同时兼顾了信号去噪和保留信号细节特征的双重要求。
  • [1] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41(3):613-627
    [2] Kazubek M. Wavelet domain image denoising by thresholding and wiener filtering[J]. IEEE Signal Processing Letters, 2003,10(11):324-326
    [3] 魏振春,王婿,徐娟.基于改进阈值自适应冗余小波的振动信号去噪[J].计算机仿真,2014,31(11):192-197 Wei Z C, Wang X, Xu J. Denoising method of vibration signal based on improved threshold and adaptive redundant second generation wavelet[J]. Computer Simulation, 2014,31(11):192-197(in Chinese)
    [4] 苏祖强,萧红,张毅,等.基于小波包分解与主流形识别的非线性降噪[J].仪器仪表学报,2016,37(9):1954-1961 Su Z Q, Xiao H, Zhang Y, et al. Nonlinear noise reduction method based on wavelet packet decomposition and principle manifold learning[J]. Chinese Journal of Scientific Instrument, 2016,37(9):1954-1961(in Chinese)
    [5] 李红延,周云龙,田峰,等.一种新的小波自适应阈值函数振动信号去噪算法[J].仪器仪表学报,2015,36(10):2200-2206 Li H Y, Zhou Y L, Tian F, et al. Wavelet-based vibration signal de-noising algorithm with a new adaptive threshold function[J]. Chinese Journal of Scientific Instrument, 2015,36(10):2200-2206(in Chinese)
    [6] 周祥鑫,王小敏,杨扬,等.基于小波阈值的高速道岔振动信号降噪[J].振动与冲击,2014,33(23):200-206 Zhou X X, Wang X M, Yang Y, et al. De-noising of high-speed turnout vibration signals based on wavelet threshold[J]. Journal of Vibration and Shock, 2014,33(23):200-206(in Chinese)
    [7] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(7):629-639
    [8] Catté F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM Journal on Numerical Analysis, 1992,29(1):182-193
    [9] Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion. Ⅱ[J]. SIAM Journal on Numerical Analysis, 1992,29(3):845-866
    [10] Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(8):1020-1036
    [11] Feng L. Diffusion filtering in image processing based on wavelet transform[J]. Science in China Series F:Information Science, 2006,49(4):494-503
    [12] Gilboa G, Sochen N, Zeevi Y Y. Estimation of optimal PDE-based denoising in the SNR sense[J]. IEEE Transactions on Image Processing, 2006,15(8):2269-2280
    [13] Chao S M, Tsai D M. An improved anisotropic diffusion model for detail- and edge-preserving smoothing[J]. Pattern Recognition Letters, 2010,31(13):2012-2023
    [14] Ren Z M, He C J, Zhang Q F. Fractional order total variation regularization for image super-resolution[J]. Signal Processing, 2013,93(9):2408-2421
  • 加载中
计量
  • 文章访问数:  931
  • HTML全文浏览量:  41
  • PDF下载量:  730
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-10
  • 刊出日期:  2018-08-05

目录

    /

    返回文章
    返回