留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

奥氏体不锈钢氢损伤表面波检测的有限元模拟

马幸申 陈建钧

马幸申, 陈建钧. 奥氏体不锈钢氢损伤表面波检测的有限元模拟[J]. 机械科学与技术, 2018, 37(3): 461-465. doi: 10.13433/j.cnki.1003-8728.2018.0321
引用本文: 马幸申, 陈建钧. 奥氏体不锈钢氢损伤表面波检测的有限元模拟[J]. 机械科学与技术, 2018, 37(3): 461-465. doi: 10.13433/j.cnki.1003-8728.2018.0321
Ma Xingshen, Chen Jianjun. Finite Element Simulation of Surface Wave Test for Hydrogen Damage of Austenite Stainless Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(3): 461-465. doi: 10.13433/j.cnki.1003-8728.2018.0321
Citation: Ma Xingshen, Chen Jianjun. Finite Element Simulation of Surface Wave Test for Hydrogen Damage of Austenite Stainless Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(3): 461-465. doi: 10.13433/j.cnki.1003-8728.2018.0321

奥氏体不锈钢氢损伤表面波检测的有限元模拟

doi: 10.13433/j.cnki.1003-8728.2018.0321
基金项目: 

国家重点基础研究发展计划(973计划)项目(2015CB057602)资助

详细信息
    作者简介:

    马幸申(1992-),硕士研究生,研究方向为无损检测,18930607609@163.com

    通讯作者:

    陈建钧,副教授,博士,jjchen@ecust.edu.cn

Finite Element Simulation of Surface Wave Test for Hydrogen Damage of Austenite Stainless Steel

  • 摘要: 奥氏体不锈钢通常比铁素体和马氏体钢具有更好的抗氢损伤性能,因此广泛地用于核能、化工等临氢环境中,但是仍然会发生可逆塑性损失和滞后开裂等相关的失效。宏观裂纹形成前,氢原子分布在金属的近表层中,而表面波在介质表层传播,且包含了超声波的大部分能量,所以表面波特别适用于早期氢损伤的检测。由于氢原子会降低了金属原子的结合力从而导致金属弹性模量的减小,因此通过检测表面波波传播时间的滞后可以检测出金属的氢损伤。本文采用ABAQUS有限元分析软件模拟了表面波在早期氢损伤以及未损伤试样中的传播过程,研究了表面波第一个波峰抵达试样上表面中间节点的时刻与氢损伤的关系。早期氢损伤造成的表面波传播时间的滞后为10-7 s数量级,对仪器精度、分辨率提出很高的要求。频率越低,对仪器的要求越高。
  • [1] 杨冰,林莉,赵建强,等.用相对衰减系数无损表征30Mn2SiV钢的显微组织[J].机械工程材料,2007,31(3):40-43 Yang B, Lin L, Zhao J Q, et al. Nondestructive characterization of mixed microstructure of 30Mn2SiV steel by ultrasonic parameter[J]. Materials for Mechanical Engineering, 2007,31(3):40-43(in Chinese)
    [2] 李萍,程向梅,李安娜,等.304不锈钢敏化程度的超声无损表征[J].机械工程材料,2013,37(3):53-57 Li P, Cheng X M, Li A N, et al. Ultrasonic nondestructive characterization for sensitization degrees of 304 stainless steel[J]. Materials for Mechanical Engineering, 2013,37(3):53-57(in Chinese)
    [3] Beloglazov S M. Peculiarity of hydrogen distribution in steel by cathodic charging[J]. Journal of Alloys and Compounds, 2003,356-357:240-243
    [4] Szliard J, Haynes R. Ultrasonic detection of hydrogen embrittlement in steel[C]//1978 Ultrasonics Symposium. Cherry Hill, NJ, USA:IEEE, 1978:316-319
    [5] 郭伟国,李玉龙,索涛.应力波基础简明教程[M].西安:西北工业大学出版社,2007:9-12 Guo W G, Li Y L, Suo T. Concise textbook of fundamental of stresswave[M]. Xi'an:Press of North West China University of Technology, 2007:9-12(in Chinese)
    [6] Imagawa H, Matsuno K, Itsuo Y. Evaluation of hydrogen embrittlement of tantalum[J]. Journal of the Society of Materials Science, Japan, 1995,44(506):1338-1343
    [7] Aggelis D G, Shiotani T. Repair evaluation of concrete cracks using surface and through-transmission wave measurements[J]. Cement and Concrete Composites, 2007,29(9):700-711
    [8] Chammas R, Abraham O, Cote P, et al. Characterization of heterogeneous soils using surface waves:homogenization and numerical modeling[J]. International Journal of Geomechanics, 2003,3(1):55-63
    [9] Semblat J F, Brioist J J. Efficiency of higher order finite elements for the analysis of seismic wave propagation[J]. Journal of Sound and Vibration, 2000,231(2):460-467
    [10] Arias I, Achenbach J D. Rayleigh wave correction for the BEM analysis of two-dimensional elastodynamic problems in a half-space[J]. International Journal for Numerical Methods in Engineering, 2004,60(13):2131-2146
    [11] 褚武扬,乔利杰,李金许,等.氢脆和应力腐蚀-基础部分[M].北京:科学出版社,2013:293-303 Chu W Y, Qiao L J, Li J X, et al. Hydrogen embrittlement and stress corrosion cracking[M]. Beijing:Science Press, 2013:293-303(in Chinese)
    [12] Troiano A R, The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Trans ASM, 1960, 52:54
    [13] Oriani R A, Josephic P H. Equilibrium aspects of hydrogen-induced cracking of steels[J]. Acta Metall, 1974, 22:1065; 1977, 25:979
    [14] Godoi W, Kuromoto N K. Effect of the hydrogen outgassing time on the hardness of austenitic stainless steels welds[J]. Materials Science and Engineering A, 2003, 354(1-2):251-256
    [15] 阚文彬.金属材料氢损伤行为及其超声表面波评价方法的研究[D].上海:华东理工大学,2013 Kan W B. Study on hydrogen induced damage of metals and its evaluation by surface acoustic wave[D]. Shanghai:East China University of Science and Technology, 2013(in Chinese)
    [16] 阚文彬,李勇峰,朱合范,等.超声表面波在均匀弹性介质中传播的数值仿真[J].计算机应用与软件,2012,29(11):32-34,51 Kan W B, Li Y F, Zhu H F, et al. numerical simulation of propagation of surface ultrasonic wave in homogeneous elastic media[J]. Computer Applications and Software, 2012,29(11):32-34,51(in Chinese)
    [17] 战宇,刘常升,张凤鹏,等.激光超声表面波检测薄板残余应力的数值模拟[J].东北大学学报(自然科学版),2015,36(3):406-409 Zhan Y, Liu C S, Zhang F P, et al. Numerical simulation of laser ultrasonic surface wave measurement of residual stress[J]. Journal of Northeastern University (Natural Science), 2015,36(3):406-409(in Chinese)
    [18] Wang J J, Shen Z H, Ni X W, et al. Numerical simulation of laser-generated surface acoustic waves in the transparent coating on a substrate by the finite element method[J]. Optics & Laser Technology, 2007,39(1):21-28
  • 加载中
计量
  • 文章访问数:  211
  • HTML全文浏览量:  36
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-20
  • 刊出日期:  2018-03-05

目录

    /

    返回文章
    返回