留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海采矿两级离心泵固液两相流数值模拟研究

丁小兵

丁小兵. 深海采矿两级离心泵固液两相流数值模拟研究[J]. 机械科学与技术, 2017, 36(11): 1708-1714. doi: 10.13433/j.cnki.1003-8728.2017.1112
引用本文: 丁小兵. 深海采矿两级离心泵固液两相流数值模拟研究[J]. 机械科学与技术, 2017, 36(11): 1708-1714. doi: 10.13433/j.cnki.1003-8728.2017.1112
Ding Xiaobing. Numerical Simulation of Solid-liquid Two-phase Flow of Two-stage Slurry Pump for Deep-sea Mining[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1708-1714. doi: 10.13433/j.cnki.1003-8728.2017.1112
Citation: Ding Xiaobing. Numerical Simulation of Solid-liquid Two-phase Flow of Two-stage Slurry Pump for Deep-sea Mining[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1708-1714. doi: 10.13433/j.cnki.1003-8728.2017.1112

深海采矿两级离心泵固液两相流数值模拟研究

doi: 10.13433/j.cnki.1003-8728.2017.1112
基金项目: 

国家自然科学基金项目(51375498)资助

详细信息
    作者简介:

    丁小兵(1968-),高级讲师,研究方向为海洋采矿设备和工程机械设计,328061160@qq.com

Numerical Simulation of Solid-liquid Two-phase Flow of Two-stage Slurry Pump for Deep-sea Mining

  • 摘要: 针对陆地用离心泵不能满足1 000 m深海矿浆提升要求,设计了一种高性能新型两级矿浆泵。选取叶轮和空间导叶为研究对象,采用三维雷诺时均N-S方程和修正的RNG κ-ε湍流模型,采取压力-速度隐式修正SIMPLEC算法,对两级矿浆泵内部湍流进行数值模拟,分析固液流场的分布规律,预测工作性能。结果表明:不同流量工况下,同一圆柱半径上,叶轮叶片压力面上的压力大于吸力面上的压力。流量越大,叶轮流道入口处速度越小,叶轮对固液流体的加速作用越弱,叶轮流道出口处的速度也越小。流量越大,空间导叶出口和入口处固液流体的速度差越小,空间导叶的转能效果越差,导致后流道出口处的压力越低,扬程越小,设备性能下降。但矿浆泵的效率随着流量的增加迅速增大,1 000 m矿浆泵的最佳流量工作范围为500 m3/h~600 m3/h。
  • [1] Park S J, Yeu T K, Hong S, et al. Design of Hardware-in-the-loop simulation(HILS) of control and monitoring system for deep-seabed manganese nodule miner[C]//Proceedings of the 7th ISOPE Ocean Mining Symposium. Lisbon, Portugal:The International Society of Offshore and Polar Engineers, 2007:198-203
    [2] Kim Y J, Yoon C H, Park Y C, et al. A study on the solid-liquid helical flow in a slim hole annulus[C]//Proceedings of the 7th ISOPE Ocean Mining Symposium. Lisbon, Portugal:The International Society of Offshore and Polar Engineers, 2007:162-166
    [3] Yoon C H, Kang J S, Park J M, et al. Flow analysis by CFD model of lifting system for shallow sea test[C]//Proceedings of the 8th ISOPE Ocean Mining Symposium. Chennai, India:The International Society of Offshore and Polar Engineers, 2009:225-228
    [4] Yoon C H, Park J M, Kang J S, et al. Shallow lifting test for the development of deep ocean mineral resources in Korea[C]//Proceedings of the 9th ISOPE Ocean Mining Symposium. Hawaii, USA:The International Society of Offshore and Polar Engineers, 2011:149-152
    [5] Hong S, Kim H W, Choi J S. A way to accomplish the mining technology for polymetallic nodules[C]//International Seabed Authority Workshop on Polymetallic Nodule Mining Technology:Current Status and Challenges Ahead. Research Triangle Park, USA:ISA, 2008:120-125
    [6] Park J M, Yoon C H, Park Y C, et al. Three dimensional solid-liquid flow analysis for design of two-stage lifting pump[C]//Proceedings of the 7th ISOPE Ocean Mining Symposium. Lisbon, Portugal:The International Society of Offshore and Polar Engineers, 2007:171-176
    [7] Yoon C H, Park Y C, Kim Y J, et al. A study on flow analysis of lifting pump and flexible hose for sea-test[J]. Journal of The Korean Society for Geosystem Engineering, 2007,44(4):1-6
    [8] Park J, Yoon C H, Kang J S. Numerical Prediction of a lifting pump for deep-sea mining[C]//Proceedings of the 8th ISOPE Ocean Mining Symposium. Chennai, India:The International Society of Offshore and Polar Engineers, 2009:229-332
    [9] Rogers S. Seafloor resource production[R]. Nautilus Minerals Limited Research Report, 2012,9:38-45
    [10] 唐达生,李钟,周知进,等.锰结核泵工作对扬矿管道振动影响的研究[J].振动与冲击,2015,34(23):149-152,160 Tang D S, Li Z, Zhou Z J, et al. Effects of manganese nodules pump operation on lifting pipe vibration[J]. Journal of Vibration and Shock, 2015,34(23):149-152,160(in Chinese)
    [11] Zou W S. COMRA's research on lifting motor pump[C]//Proceedings of the 7th ISOPE Ocean Mining Symposium. Lisbon, Portugal:The International Society of Offshore and Polar Engineers, 2007:177-180
    [12] Chung J S. Deep-ocean mining technology Ⅲ:developments[C]//Proceedings of the 8th ISOPE Ocean Mining Symposium. Chennai, India:The International Society of Offshore and Polar Engineers, 2009:1-7
    [13] 李哲奂.扬矿电泵内流场数值模拟及性能预测[D].长沙:湖南大学与,2013 Li Z H. Lifting motor pump's internal flow field numerical simulation and performance prediction[D]. Changsha:Hunan University, 2013(in Chinese)
    [14] "十五"采矿海试系统总师组.大洋多金属结核中试采矿系统1000m海上试验总体系统技术设计[R].北京:中国大洋协会,2004 "Fifteen" sea trial mining systems division group. The design of the overall system of 1000m marine test in the mining system of ocean polymetallic Nodules[R]. Beijing:China Ocean Mineral Resources R&D Association, 2004(in Chinese)
    [15] 关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011:339-346 Guan X F. Modern pumps theory and design[M]. Beijing:China Astronautic Publishing House, 2011:339-346(in Chinese)
    [16] 陈奇.深海采矿矿浆泵内固液两相流数值模拟及性能预测研究[D].长沙:中南大学,2014 Chen Q. Numerical simulation on solid-liquid two-phase flow and performance prediction of slurry pump for deep-sea mining[D]. Changsha:Central South University, 2014(in Chinese)
  • 加载中
计量
  • 文章访问数:  164
  • HTML全文浏览量:  25
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-16
  • 刊出日期:  2017-11-05

目录

    /

    返回文章
    返回