留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用EKF状态观测器及滑模算法结合的半车主动悬架控制

邱香

邱香. 采用EKF状态观测器及滑模算法结合的半车主动悬架控制[J]. 机械科学与技术, 2017, 36(10): 1505-1511. doi: 10.13433/j.cnki.1003-8728.2017.1005
引用本文: 邱香. 采用EKF状态观测器及滑模算法结合的半车主动悬架控制[J]. 机械科学与技术, 2017, 36(10): 1505-1511. doi: 10.13433/j.cnki.1003-8728.2017.1005
Qiu Xiang. A Study on Half-car Active Suspension Control by Combining EKF State Observation and Sliding Mode Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1505-1511. doi: 10.13433/j.cnki.1003-8728.2017.1005
Citation: Qiu Xiang. A Study on Half-car Active Suspension Control by Combining EKF State Observation and Sliding Mode Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1505-1511. doi: 10.13433/j.cnki.1003-8728.2017.1005

采用EKF状态观测器及滑模算法结合的半车主动悬架控制

doi: 10.13433/j.cnki.1003-8728.2017.1005
基金项目: 

江西省教育厅科学技术研究项目(GJJ151160)、江西科技学院开放基金项目(16XTKFYB04)、江西省科技厅科技支撑计划项目(20135BBG70010)、南昌市汽车动力学与控制研究知识创新团队及江西省教育厅科技项目重点项目(GJJ161133)资助

详细信息
    作者简介:

    邱香(1981-),讲师,硕士,研究方向为车辆动力学及控制,ltqiuxiang@126.com

A Study on Half-car Active Suspension Control by Combining EKF State Observation and Sliding Mode Algorithm

  • 摘要: 针对主动悬架控制可能面临的平顺性、悬架动挠度及车轮动载性能冲突,以及考虑参数不确定与外界干扰带来的鲁棒性问题,论文基于非线性滤波方法设计了滑模控制器以综合改善悬架性能;根据控制算法所需实时而准确的车辆状态信息需求,采用扩展卡尔曼滤波方法设计了状态观测器。分别进行随机路面激励、正弦路面激励和凸块路面激励仿真分析,结果显示所设计控制器具有良好的路面适应性,在不牺牲悬架动挠度的情况下,可以有效改善车辆平顺性及轮胎抓地力,有利于综合提升车辆的乘坐舒适性和操纵稳定性。
  • [1] Rajamani R. Vehicle dynamics and control:Springer Science & Business Media, 2011
    [2] 兰波,喻凡.车辆主动悬架LQG控制器的设计与仿真分析[J].农业机械学报,2004,35(1):13-17 Lan B,Yu F. Design and simulation analysis of lqg controller of active suspension[J]. Transactions of The Chinese Society of Agricultural Machinery, 2004,35(1):13-17(in Chinese)
    [3] 龙垚坤,文桂林,陈哲吾.汽车主动悬架鲁棒保性能控制仿真研究[J].汽车工程,2014,36(2):216-221 Long Y K, Wen G L, Chen Z W. A simulation study on robust guaranteed cost control for vehicle active suspension[J]. Automotive Engineering, 2014,36(2):216-221(in Chinese)
    [4] 王莹,方敏,陈无畏.基于4自由度车辆模型的电液主动悬架H∞控制[J].汽车工程,2004,26(1):9-12 Wang Y, Fang M, Chen W W. H∞control for hydro-electric active suspension system based on 4-DOF half-vehicle model[J]. Automotive Engineering, 2004,26(1):9-12(in Chinese)
    [5] Gáspár P, Szaszi I, Bokor J. Design of robust controllers for active vehicle suspension using the mixed μ synthesis[J]. Vehicle System Dynamics, 2003,40(4):193-228
    [6] 管成,潘双夏.车辆主动悬架的非线性路面自适应控制研究[J].振动与冲击,2007,26(6):26-30 Guan C, Pan S X. Nonlinear road adaptive control of vehicle active suspension[J].Journal of Vibration and Shock, 2007,26(6):26-30(in Chinese)
    [7] Lin J X, Huang C J. Nonlinear backstepping active suspension design applied to a half-car model[J]. Vehicle System Dynamics, 2004,42(6):373-393
    [8] 邱香.非线性主动悬架backstepping控制研究[J]. 华东交通大学学报,2016,(3):54-59 Qiu X. Research on backstepping control of nonlinear active suspension[J]. Journal of East China Jiaotong University, 2016,(3):54-59(in Chinese)
    [9] 庞辉,陈嘉楠,梁军,等.基于模型参考方法的车辆非线性主动悬架反推控制[J].兵工学报,2016,37(10):1761-1769 Pang H, Chen J N, Liang J, et al. Backstepping controller design for nonlinear active vehicle suspension based on model reference control[J]. Acta Armamentarii, 2016,37(10):1761-1769(in Chinese)
    [10] Wang Y, Li Y, Zheng L. Backstepping and Smith predictor integrated control on MR vehicle suspension system[C]//International Conference on Electrical and Control Engineering, IEEE, 2011:92-97
    [11] Yagiz N, Hacioglu Y. Backstepping control of a vehicle with active suspensions[J]. Control Engineering Practice, 2008,16:1457-1467
    [12] Simon D,张勇刚,李宁,等.最优状态估计[M].北京:国防工业出版社,2013 Simon D, Zhang Y G, Li N, et al. Optimal state estimation[M]. Beijing:National Defense Industry Press, 2013(in Chinese)
    [13] Hong, Sanghyun, et al. A novel approach for vehicle inertial parameter identification using a dual Kalman filter[C]//IEEE Transactions on Intelligent Transportation Systems, 2015,16(1):151-161
    [14] Bolandhemmat H. Distributed sensing and observer design for vehicles state estimation[D]. University of Waterloo, 2009
    [15] Simon D. Optimal state estimation:kalman, hinfinity, and nonlinear approaches[M]. New York:Wiley-Interscience, 2006:1457-1467
  • 加载中
计量
  • 文章访问数:  282
  • HTML全文浏览量:  40
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 刊出日期:  2017-10-05

目录

    /

    返回文章
    返回